
www.manaraa.com

A

Query Optimization in Temporal Relational Databases

By

Samir Adel Mohammad

Supervisor

Assoc. Prof. Munib Qutaishat

Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in

Computer Science

Faculty of Graduate Studies

University of Jordan

May 2002

www.manaraa.com

B

This thesis was successfully defended and approved on

…………………………………………..

Examining Committee Signature

Dr. Munib Qutaishat / Chairperson

Assoc. Prof. of Database ………………………

Dr. Saleh Oqeili / Member

Prof. of Computer Architecture

Dr. Riad Jabri / Member

Assoc. Prof. of Programming Languages

Dr. Khalil El-Hindi / Member

Asst. Prof. of Artificial Intelligence

Dr. Rehab Duwairi / Member

Asst. Prof. of Database

www.manaraa.com

C

Dedication

To my father,

To my wife, and

To Mrs. Beth Kuttab,

For support and understanding

www.manaraa.com

D

Acknowledgements

I would like to thank Dr. M. Qutaishat for his guidance and support and

the examination committee for their presence at my defense.

Also, many thanks to all staff members of the Department of Computer

Science at the University of Jordan for all the learning and enlightenment

they have given me during the past three years of my graduate studies. I

wish all staff members and the department a continuous advancement.

www.manaraa.com

E

List of Contents

 Dedication III

 Acknowledgement IV

 List of Contents V

 List of Tables VIII

 List of Figures X

 Appendices XII

 Abstract XIII

 1. INTRODUCTION 1

 1.1 Overview 1

 1.2 Temporal Relational Databases 1

 1.3 Temporal Vs. Classical Relation Database 3

 1.4 Importance of Query Optimization 5

 1.5 Basic Areas of Query Optimization 7

 2. LITERATURE REVIEW FOR QUERY

 OPTIMIZATION IN TEMPORAL

 RELATIONAL DATABASE 9

 2.1 Introduction 9

www.manaraa.com

F

 2.2 Architecture of Query Optimizer 14

 2.3 The Re-Writer 17

 2.4 Algebraic Space 20

 2.4.1 Relational algebra transformation rule 20

 2.4.2 Query trees 25

 2.5 Method Structure 30

 2.5.1 Nested loops 31

 2.5.2 Merge joins 32

 2.6 Size & Selectivity Estimators 33

 2.7 The Cost Model 37

 2.8 The Planner 38

 3. METHODOLOGY 42

3.1 TEMPORAL RELATIONAL DATABASE

SCHEMA AND MODELS 42

 3.1.1 Overview 42

 3.1.2 Temporal Relation Database File Structure 43

 3.1.3 Temporal Relational Database Schemes 46

 3.2 INDEXING 63

 3.2.1 Introduction 63

 3.2.2 Multi-level Clustered Index 66

 3.2.3 Hashed-Cluster Temporal Index 70

www.manaraa.com

G

 3.2.3.1 Transaction start time in rollback databases 77

 3.2.3.2 Valid start time in historical databases 77

 3.2.3.3 Valid and transaction end times in rollback

 and historical database 78

 3.2.4 Temporal Relational databases Operations 79

 3.3 JOIN PROCESSING 82

 3.3..1 Overview 82

 3.3.2 Join Using S, and Ts 86

 3.3.3 Join Using Ts, and S 94

 3.3.4 Join Using Ts, Te, and S 102

 3.3.5 Join Using Ts in a Relation with Itself 111

 3.3.6 Other Cost Factors 114

 4. CONCLUSION 116

 4.1 Summary 116

 4.2 Future Work 118

 References 120

www.manaraa.com

H

List of Tables

 Table No. Description Page No.

 2.1 Employee relation 34

 2.2 Department frequency in employee 34

 2.3 Equi-width histogram 35

 2.4 Equi-depth histogram 36

 3.1 Needed bytes for different granularities 44

 3.2 Memory comparison between Access and

 suggested model 45

 3.3 Employee relation 47

 3.4 Tuple time stamping 48

 3.5a Non-temporal attribute 48

 3.5b Salary temporal attribute 48

 3.5c Department temporal attribute 49

 3.6 Improvement of TTMR schema over TTSR

 schema 54

 3.7 Employee snapshot relation 58

 3.8 Employee-salary temporal relation 58

 3.9 Employee-department temporal relation 59

www.manaraa.com

I

 3.10 Temporal database dictionary (Meta data) 73

 3.11 Possible operation on temporal database 80

 3.12 Employee snap-shot relation 82

 3.13a Temporal employee-department relations 83

 3.13b Temporal employee-salary relations 83

 3.14 Department relation 87

 3.15 Salary relation 87

 3.16 Output of algorithm 3.3 93

 3.17 Department relation sorted by Ts & S 94

 3.18 Salary relation sorted by Ts & S 95

 3.19 Output of algorithm 3.4 101

 3.20 Department relation sorted by Ts, Te & S 102

 3.21 Salary relation sorted by Ts, Te & S 103

 3.22 Output of algorithm 3.5 110

 3.23 Department relation sorted by Ts 111

 3.24 Output of algorithm 3.6 114

www.manaraa.com

J

List of Figures

 Figure No. Description Page No.

 2.1 Optimization flow in DBMS 12

 2.2 Query optimizer architecture 14

 2.3 Enhanced temporal relational database

 optimizer architecture 20

 2.4 Query trees 27

 2.5 Join query tree 28

 2.6 Left deep, right deep, and bushy trees 30

 3.1 Daily transactions in roll back database 57

 3.2 Multi-level index 67

 3.3 Modified multi-level index 71

 3.4 Hashed-cluster index 72

 3.5 Generalization and specialization in time

 granularity 81

 3.6 Department relation chart, sorted by S & Ts 89

 3.7 Salary relation chart, sorted by S & Ts 90

 3.8 Department relation chart, sorted by Ts & S 96

 3.9 Salary relation chart, sorted by Ts & S 97

www.manaraa.com

K

 3.10 Dept relation chart, sorted by Ts, Te & S 104

 3.11 Salary relation chart, sorted by Ts, Te & S 105

 3.12 Tuples r1 and r2 time intersection 108

 3.13 Department relation chart, sorted by Ts 112

www.manaraa.com

L

Appendices

 Appendix No. Description Page No.

 Appendix 1 Joins implementation source code 126

 Appendix 2 Abbreviations and description 138

www.manaraa.com

M

Query Optimization in Temporal Relational Databases

By

Samir Adel Mohammad

Supervisor

Assoc. Prof. Munib Qutaishat

Abstract

Temporal databases are repositories of time dependent information. The

main difference from standard database (relational database) systems, is

the need to possibly store a limitless number of tuples that grows over

time.

Many proposals have been introduced to establish models that incorporate

time dimension into standard relational databases. Some of these models

suggest using attribute time-stamps. While other models suggest using

single relation time-stamps, or multiple relations time stamps.

www.manaraa.com

N

This thesis try to address several issues connected to multiple relations

time-stamps temporal relational model and the development of temporal

relational databases. It discusses different temporal relational database

models. Determine the storage requirements for multiple relations

temporal relational model and single relation temporal relational model.

And comparing storage costs for multiple relations temporal relational

model with single relation temporal relational model. Also, new hash-

clustered indexing structure has been designed to accommodate efficient

access for tuples that are indexed on time-stamps. In temporal schema and

temporal index sections, we demonstrate that our solutions are practical

by outlining efficient implementations. Furthermore, new time

intersection equi-join algorithms have been written. These algorithms

have been designed to handle special types of temporal relations, such

like continuous and event dependents temporal relations.

www.manaraa.com

1

1. INTRODUCTION

1.1 Overview

In the rest of this section we will discuss temporal databases in general,

query optimization, and illustrate the guidance through which this thesis

is motivated by.

In the next section, query optimization methodology in classical relational

database will be outlined. Then discussion of query optimization in

temporal relational databases will be carried out in the rest of the thesis.

Three major areas in query optimization will be discussed. In section 3.1

temporal relational database schema will be discussed. In section 3.2

temporal relational database index will be discussed. And in section 3.3

joining in temporal relational database will be discussed. In the last

section a summary of findings and a brief for the future researches with

regards to the findings will be outlined.

1.2 Temporal Relational Database

Temporal databases are becoming very popular lately. Many applications

depend on the temporal aspect in their usage such as hotel reservation,

www.manaraa.com

2

medical services, insurance companies, travel agencies, communications,

and many other applications. Importance of temporal databases arises

from the fact that they are always occupying a very huge amount of

memory space. All transactions are recorded all the times. In contrary to

transaction databases, only current status of an attribute is recorded. This

kind of database that holds only the current status is called snapshot

database. Snapshot relations that are the core of snapshot database

constitutes a small fraction of temporal relational database.

Therefore, required memory space for temporal relational databases are

larger than the required memory space that is required for regular

classical databases, because of the reason stated in last paragraph. Plus the

fact that each tuple in temporal relational databases is associated with 2-4

time-stamps. Because of these reasons, query optimization techniques

becomes more essential for temporal database, more than they are

essential for classical databases, in order to deal with this enormous

quantity of data. Another important fact that explains the need for query

optimization in relational temporal database is that the related joins

between different relations are always of inequality join type. Inequality

joins requires space and processing time in temporal database order of

magnitude greater than the needed space and time for equality joins which

is popular in regular classical relational database.

www.manaraa.com

3

As temporal database area is an exciting research area, many researches

have been conducted in this field generally. 1200 papers on temporal

databases have appeared Up to year 1996. Over 300 papers during

1995-1996 alone [Tsotras, 1996].

1.3 Temporal Vs. Classical Relational Databases

The importance of temporal relational database intensive researches

comes from the following facts:

• Temporal databases are always very huge in size. Whereas classical

databases size is small if it compare to temporal database.

• Joins in regular databases are of equality types. But joins in

temporal relations are of in-equality types.

• Researches of algorithm complexity for regular relational database

are fixed and well known. But in temporal database it varies

depending on the used infrastructure schemes, such like schemes that

use attribute time stamping, single tuple time stamps, multiple tuples

time stamps and many more.

• Agreements on universal relational database definitions have been

achieved. But for temporal database there are many to choose from,

with regard to temporal relational databases. Besides object oriented

approaches.

www.manaraa.com

4

• A comprehensive solid foundation discipline, so to speak, has

emerged to optimize query in classical relational database. Steps are

well identified and commercial query optimizers are available. In

contrast, the picture for temporal relational databases is still

ambiguous and prototypes for temporal query optimizers are still

under testing.

• Index in regular databases involves certain key/keys, but in

temporal relational database there are four keys and they are all as

important as each other’s are.

Many researchers have considered in their researches the possibility of

using the existing relational query languages in building a temporal query

language in upward compatibility [Bair, 1997]. Others have designed a

temporal middleware to optimize temporal queries using conventional

DBMS [Slivinskas, 2001]. Also Snodgrass [1996A] and [1997B] had

integrated valid time and transaction time into SQL query language.

Regular SQL query language is illustrated in Qutaishat [1999]. These

kinds of approaches in not preferred in temporal database implementation.

Simulating temporal database by using conventional database systems

will limit our capabilities to those features that can be supported by

classical database.

As an example:

www.manaraa.com

5

• We will not be able to use TSQL or TQUEL. Complete survey for

temporal query languages can be found in Chomicki [1995] and

Toman [1995].

• We will not be able to use special constructs for attribute

characteristics, such like Granularity, Data points, Event Points,

Regularity, Change Points, and Type.

• We will not be able to use constructs for Associations between

Temporal Attributes.

• Classical DBMS only support functionality to access a single state

of the real world, usually the most recent one. Temporal DBMS needs

to have access not only to the most recent state, but also to past and

even future states.

Furthermore, temporal manner and temporal nature in a database are

fundamentally distinct and possess features that are better be dealt with

through a new view. This view has to deal efficiently with temporal tuples

that contains surrogate attribute, temporal attribute, start time, and end

time.

1.4 Importance of Query Optimization

In database management systems, we do not expect users to write their

queries in a way that suggests the most efficient evaluation plan. Rather, it

www.manaraa.com

6

is the responsibility of the system to construct a query-evaluation plan

that minimizes the cost of query evaluation. The most relevant

performance measure in query optimization is usually the number of disk

accesses [Silberschatz, 1997] in regular database. Whereas, it is the

communication cost in distributed systems [Ozsu, 1999].

Query optimization is the process of selecting the most efficient query-

evaluation plan for a query. One aspect of optimization occurs at the

relational-algebra level. At this level, an attempt is made to find an

expression that is equivalent to the given expression, but that is more

efficient to execute. The other aspect involves the selection of a detailed

strategy for processing the query, such as choosing the algorithm to use

for executing an operation, choosing the specific indexes to use, and so

on.

To choose among different query-evaluation plans, the optimizer has to

estimate the cost of each evaluation plan. Computing the precise cost of

evaluation plan is usually not possible without actually evaluating the

plan. Instead, optimizers make use of statistical information about the

relations, such as relation sizes and index depths, to make a good estimate

of the cost of a plan.

 The optimizer estimates the cost of the different evaluation plans. If an

index is available on a joining attribute, then the evaluation plan in which

www.manaraa.com

7

the selection is done using the index, is likely to have the lowest cost, and

thus, to be chosen.

Once the query plan is chosen, the query is evaluated with that plan, and

the result of the query is outputted.

1.5 Basic Areas of Query Optimization

Three major areas will be discussed in temporal relational query

optimization. These three areas are Temporal Relational Database

Schemes, Temporal Relational Database Indexes, and Temporal

Relational Database Joins. They will be discussed in sections 3.1, 3.2, and

3.3, respectively. These areas are strongly related to each other. Also, they

are dependent on each other. Elaboration to the proposals in one area can

not be carried out properly without providing an adequate foundation in

the other prerequisite areas. These areas form the core parts of query

optimization in relational databases as well as in temporal relational

databases. Most research papers are concentrating in these areas [Tansel,

1993]. These areas will be discussed and enriched with new techniques

and/or with some suggested improvements to the existing ones.

Database schema and structure is very important. It will be seen in section

3.1 how different schema affects remarkably the storage costs.

www.manaraa.com

8

Indexes have a magic effect in query performance. An example will be

illustrated in section 2 how indexes affect performance. This example was

quoted from Ioannidis [1995]. In this example we use a flat query that

join two relations that have indexes. Three plans were proposed to solve

the query. The first does not use any available indexes for any of the two

relations. The second plan uses one index for only one relation. The third

plan uses both relations’ indexes. The first plan took more than 24 hours

to finish, the second plan took almost an hour, and the third plan took a

fraction of a second. The execution time has dropped from more than 24

hours to less than one second with the help of indexes. That’s why we

have included a section in our thesis for indexes.

Also, indexing alone is not efficient if the proper method for

implementing the join is unknown. Hence, a section has been included in

this thesis to discuss joins in temporal relational database.

Considerably, the accomplishment of DBMS is measured by the

sophistication and distinction of its query optimizer.

Although query optimization exists as a field for more than twenty years,

it is very surprising how fresh it remains in terms of being a source of

research problems [Ioannidis, 1995].

www.manaraa.com

9

2. LITERATURE REVIEW FOR QUERY

OPTIMIZATION IN RELATIONAL DATABASES

2.1 Introduction

For any given query, the operating DBMS will have many plans to

process the query. And the question that is raised here is which plan

should the DBMS follow? Even though, all plans will produce the same

desired output. But the cheapest plan should be followed. The cost could

be measured in time and resources.

Memory is an important factor in temporal query optimization. Because a

large amount of data needs to be processed, more used memory will

improve the executing time. The needed time to produce a query result is

dictated by disk access and processing time. But since processing time is

too small to be considered, then number of disk access will be the main

factor in query optimization.

In large databases, the cost of processing a query is usually dominated by

disk access [Silberschatz, 1997]. It is measured by the number of block

transfers from disk, which is slow compared to memory access. Thus,

strategy that should be followed in order to process a query should require

minimum number of disk accesses. The optimizer should be smart enough

www.manaraa.com

10

to decide which strategy is best. Also, time spent by the optimizer to

choose a strategy should not exceed the saved time by choosing such best

and most efficient strategy. In distributed systems, the communication

time is generally the dominant factor in measuring the cost [Ozsu, 1999].

The difference in a query processing time for a given query could be

enormous. For that reason query optimization became necessary in

DBMSs. As an example quoted from Ioannidis [1995]. Consider the

following database schema:

Employee (Ename, Eage, Esal, Edno)

Department (Dno. Dname, Dfloor, Dbudget)

Consider the following SQL query:

Select Ename, Dfloor

From Employee, Department

Where Employee.Edno=Department.Dno and Esal > 50,000

Assume the following characteristics applies for the used database

schema:

 Pages # (Employee relation) : 20,000

 Pages # (Department relation) : 10

 Tuples # (Employee relation) : 100,000

 Tuples # (Department relation) : 100

www.manaraa.com

11

 Indices (Employee relation) : Clustered B+ tree on Esal key,

 (3-Levels deep)

 Indices (Department relation) : Clustered hashing on Dno key,

 (1.2 pages of Avg. bucket length)

 Buffer pages # : 3

 Disk page access cost : 20 ms

According to the given assumptions about the database schema. The

above query could be solved in too many ways. But in order to illustrate

the enormous difference in processing time, let us consider the following

three plans:

Plan 1 : Use the B+ index in Employee to extract records that

have Esal > 50,000 then use the hash index in Department

to extract records for the corresponding Edno.

Plan 2 : For each tuple in Department relation scan all

Employee relation to search for matching Edno and Esal >

50,000.

Plan 3 : Cross product Department relation with Employee

relation, then scan the result to search for records that have

Edno=Dno and Esal > 50,000.

Calculating the I/O cost of these three plans according to the above

parameters will produce the following results. The time cost for plan 1 is

www.manaraa.com

12

0.32 seconds. For plan 2, the cost is more than an hour. And for plan 3 the

cost is more than 24 hours. This example illustrates the needs to have an

optimizer in the operating DBMSs in order to choose the cheapest

alternative. Note that two indexes have been used in plan 1.

The stages that a query runs through in a DBMS in order to produce an

answer for a query is depicted in Figure 2.1.

Figure 2.1. Optimization flow in DBMS

As can be seen from Figure 2.1 . The basic steps are:

1. Parsing and translation.

2. Optimization.

3. Evaluation.

The query parser checks the validity of the query syntax and translates it

into some kind of an internal form that is understandable by the system. It

Statistics &

Heuristic

Data

Query Parser &

translation

Relational Algebra
Expression

Optimizer

Execution Plan Evaluation

Engine

Query

Output

Data Data

www.manaraa.com

13

verifies that the relation names appearing in the query are names of

relations in the database [Aho et al., 1986] .

The optimizer generates all the possible equivalent algebraic forms that

are qualified for further investigation of the cost. Once the optimizer

decides on the cheapest algebraic form, it passes that form to the

evaluation engine. The evaluation engine generates the code for that

algebraic form and then proceeds in query processing to generate the

query result.

There are two types of queries, they are embedded queries and interactive

(Ad-Hoc) queries. The embedded query will go through the above 3

stages depicted is Figure 2.1 only for the first time. Afterwards, if it is

called a second time, it will skip the optimization step and go directly to

step 3 (query evaluation). Whereas for interactive ad-hoc queries, all 3

stages are passed through every time a query is activated. In embedded

queries, the query is translated into a reusable code during compiling

time, and can be used again repeatedly during run time. In case of

embedded queries, an exhaustive search approach is often used where

almost all possible execution strategies are considered [Selinger et

al., 1979]. Optimization done through these two types of queries is

basically the same. The embedded queries have a shortcoming, such that

the given information at the execution run time may be different than

www.manaraa.com

14

information that was available at the compiling time. Such like: existence

of indexes and size of buffer.

In the following section, the architecture of query optimizer and its

components will be illustrated. In the sections following the next section,

a more deeply investigation of these components will be carried out.

2.2 Architecture of Query Optimizer

The main objective for a query optimizer is to find the most efficient plan

to execute a query correctly. When a query is received from the parser it

passes through many stages that all together compose the optimizer.

These stages are illustrated in Figure 2.2.

 Figure 2.2. Query optimizer architecture

Re-Writer

P l a n n e r

Algebraic
Space

Method-
Structure

Space

Cost Model

Size
Estimator

Selectivity
Estimator

www.manaraa.com

15

As can be seen from Figure 2.2 . The optimizer consists of main two

components, Re-Writer Model, and Planner Model. The Planner model

control and collects data from three models, Algebraic Space, Method-

Structure Space, and Cost Model.

The cost model estimates the cost for estimated size and estimated

selectivity as per received plan from the planner through the size and

selectivity estimators. The re-writer model rewrites the query in more

efficient clearer way if necessary. As an example, replacing views with

their exact naming, and flattening out of nested queries [Kim, 1982]. This

stage is identified as declarative stage because it acts on static

characteristics of the database schema.

The planner is the most important model in the optimizer. Among all the

possible plans to solve the query, the planner is responsible for choosing

the most efficient (cheapest) plan to process the query. It does that by

limiting the space of execution plans. This space is determined with the

help of two models, algebraic space and method-structure space. The

options that are limited by searching space are tested afterwards by the

cost model to determine the cheapest.

Algebraic basis provided by relational models is of considerable help in

query optimization. Algebraic space determines the primarily cheapest

sets of actions that are to be executed in order to generate the result for

www.manaraa.com

16

the given query. These sets of actions are represented in relational algebra

formulas or as a tree form. Once the strongest candidates’ sets of actions

are determined by algebraic space, the method-structure space is used to

indicate the methods at which each set can be implemented. These

methods are determined by using nested loops, merge scan, or hash join.

According to the available supporting data structure and indexes.

Cost model determines the cost of each implementation plan. Each

implementation plan’ cost will vary depending on the used join method,

index type, and order of execution steps [Ioannidis, 1990]. Many factors

may affect the cost such like the buffer size, disk-CPU overlap, and

random or sequential access to the records.

The more available buffer size, the more temporal data that would be

processed at one time, which will lead to less execution time.

If the disk-CPU overlap is synchronized then efficiency will be improved.

Synchronization can be established by having the processor processing a

chunk of data while the I/O controller is extracting a chunk of data from

the hard disk. By the time the CPU finishes processing the chunk it has,

the I/O controller will finish extracting a chunk of data from the hard disk

and passes it to the CPU at the same time. And so on. Therefore, the CPU

will be kept busy most of the time, which will lead to improvement in

efficiency.

www.manaraa.com

17

Hard disk access is associated with disk access time and disk latency

time. To transfer a disk block, given its address, the disk controller must

first mechanically position the read/write head on the correct track. The

time required to do this is called the seek time. Following that, there is

another delay called the rotational delay or latency, that is the time it takes

the beginning of the desired block to rotates into position under the

read/write head.

Two sub-models are used within cost model. The first is the size

estimator, which is responsible for determining the size of used relations

and indexes. Also responsible for estimating the size of intermediate

relations if it’s applicable. The second model is the selectivity estimator,

which is responsible for finding the distribution of an attribute values

within a relation. The cost model uses statistics that are saved in the

database catalogue. [Ozkaraham, 1990] have illustrated query

optimization in regular relational databases clearly.

In the following sections, these models will be discussed in more details.

2.3 The Re-Writer

The re-writer model duty are mainly re-writing queries in an equivalent

manner to the original query, after replacing views with it’s related

relations and flattening out the nested queries. A new area of re-writing

www.manaraa.com

18

has been explored, and that is semantic optimization re-writing. This

approach can be applied to temporal relational database efficiently. As an

example: Suppose that a relation that holds transaction time for the

employees in a firm is known to start at 1/1/1997 and ends at the current

time. If we get a query that is inquiring about employees before or after

that time interval, it will be rejected or notified of this fact.

As another example: Suppose there is a DBMS for an airlines company.

Assume that the business roles includes the following two roles :

• No Airplane captain can fly for more that 30 hrs per week.

• No flight steward is allowed to fly more than 50 hrs per week.

Assume that a primary index sorted on hiring dates exists in the database.

For the following query:

Select Emp

From Employee, Fly_Schedule

Where Employee.Rank= Steward and

Sum(Fly_Schedule.FlyHrs) > 10,000

Instead of summing up all flying hours for all stewards. And since we

know that no steward can fly for more than 50 Hrs a week, and

10,000/50=200. Then we know that we have to search for stewards that

are hired before 200 weeks ago and that is 3.7 years from now. Suppose

the date was then June 1, 1995.

www.manaraa.com

19

If the optimizer is equipped with a semantic re-writer [King, 1981] and

[Siegel et al., 1992], in which this semantic re-writer is also equipped

with heuristic temporal engine. Then this engine may deduct a statement

from the previous paragraph and augment this statement as an extra

statement to the original query (third line in the query). Therefore, the

new query will be as suggested below:

Select Emp

From Employee, Fly_Schedule

Where Employee.StartDate<= #1/6/1995# and

Employee.Rank = Steward and

Sum(Fly_Shedule.FlyHrs)>10,000

Since we have primary index on “StartDate” key field in the Employee

relation, then enormous time can be saved.

Based on the previous examples, we could embed to the optimizer in

temporal relational database a specialized heuristic engine that is capable

of enforcing temporal constraints in data entry. Also, this engine should

be able to infer shortest way to re-write a query in order to execute it in

less time, in accordance with the business rules. So the optimizer

architecture depicted in Figure 2.2 , may be enhanced as in Figure 2.3.

www.manaraa.com

20

Figure 2.3. Enhanced temporal relational database optimizer architecture

The re-writing stage is identified as declarative stage because it acts upon

static characteristics of the database schema.

2.4 Algebraic Space

As explained above, Algebraic space determines the primarily cheapest

sets of actions that would be executed in order to generate the result for

the given query. These sets of actions are represented in relational algebra

formulas or as a tree form. In the following two subsection we will review

“relational algebra transformation rules” and “query trees”.

2.4.1 Relational algebra transformation rules

The main role of query processor is to choose the best relational algebra

query among all equivalent ones. As number of queries increases in the

Heuristic

Temporal

Engine

Re-Writer

P l a n n e r

Algebraic
Space

Method-
Structure

Space

Cost Model

Size
Estimator

Selectivity
Estimator

www.manaraa.com

21

query, the query may be represented by very large number of equivalent

queries [Ibaraki, 1984], which is reduced to the strongest candidate

equivalent relational algebra unit. Many rules can be implemented to

transform a query into another equivalent one that is cheaper or could be

further simplified to be cheaper. These rules are as follows:

1- Cascade of π: For a cascaded π operation. All π can be ignored

except the last one, since it includes all the cascaded ones

πList1 (πList2 (... (πListn(R)) ...)) = πList1(R)

2- Cascade of σ: A sequence of cascaded σ operations according

to some conditions c1, c2, ... , cn in the same relation, can be

conjunct in a single σ operation with conjunctive conditions c1, c2,

... , cn.

σc1(σc2(...(σcn(R))...)) = σ c1 and c2 and ... and cn (R)

3- Commutativity of σ:

σc1(σc2(R)) = σc2(σc1(R))

4- Commutativity of c and .

R c S = S c R

R S = S R

www.manaraa.com

22

5- Commuting σ with π: Only if the selection condition is related

to the projected attributes A1, A2, ... , An.

πA1,A2, ... , An (σc(R)) = σc (πA1,A2, ... , An(R))

6- Commuting σ with c (or)

6.1 : If the selection condition attributes are located in R then:

σc(R S) = (σc (R)) S

6.2 : If the selection condition in C1 is related to R and selection

condition in C2 is related to S and condition c = c1 and c2 then:

(σc1 (R)) (σc2 (S)) = σ c (R S)

6.3 : The same rules is applicable for 6.1 and 6.2 if we replace

with c

7- Commuting π with c (or)

7.1 : Suppose there is a set of attributes L={A1, A2, ... , An, B1,

B2, ... , Bn), where A1, A2, ... , An belongs to relation R and B1, B2,

... , Bn belongs to relation S. If the join condition requires only

attributes that exist in L then:

πL(R c S) = (πA1, ... , An (R)) c (πB1, ... , Bn(S))

7.2 : If all assumptions in 7.1 are applicable, and there are { An+1,

... , An+k } and { Bn+1, ... , Bn+k}attribute in R and S, respectively,

that are related to the condition c and does not exists in L then:

www.manaraa.com

23

πL(R c S) = πL [(πA1, ... , An, An+1, ... , An+k (R)) c (πB1, ... , Bn,

Bn+1, ... , Bn+k (S))]

7.3 : The same rules is applicable for 7.1 if we replace c with ,

and it is not applicable for 7.2 because of the presence of condition

attributes.

8- Associativity of c , , ∪ , and ∩: the symbol φ may be

substituted with any of these four operators:

(R φ S) φ T) = R φ (S φ T)

9- Commutativity of ∩ and ∪ : the symbol φ may be substituted

with any of these two operators:

R φ S = S φ R

10- Commuting π with ∪ :

πL (R ∪ S) = (πL (R)) ∪ (πL(S))

11- Commuting σ with ∪, ∩, and - : the symbol φ may be

substituted with any of these three operators

σc (R φ S) = (σc (R)) φ (σc (S))

12- Change σ and into c : If the operator is followed by

the operator σ then replace both with c as follows:

σc (R S) = R c S

www.manaraa.com

24

13- The transformation using logical operations ∧, ∨, and ¬ :

13.1 P1 ∧ P2 ⇔ P2 ∧ P1

13.2 P1 ∨ P2 ⇔ P2 ∨ P1

13.3 P1 ∧ (P2 ∧ P3) ⇔ (P1 ∧ P2) ∧ P3

13.4 P1 ∨ (P2 ∨ P3) ⇔ (P1 ∨ P2) ∨ P

13.5 P1 ∧ (P2 ∨ P3) ⇔ (P1 ∧ P2) ∨ (P1 ∧ P3)

13.6 P1 ∨ (P2 ∧ P3) ⇔ (P1 ∨ P2) ∧ (P1 ∨ P3)

13.7 ¬ (P2 ∧ P3) ⇔ ¬ P1 ∨ ¬ P2

13.8 ¬ (P2 ∨ P3) ⇔ ¬ P1 ∧ ¬ P2

13.9 ¬ (¬ P) ⇔ P

14- Elimination of redundancy

14.1 P ∧ P ⇔ P

14.2 P ∨ P ⇔ P

14.3 P ∧ true ⇔ P

14.4 P ∨ false ⇔ P

14.5 P ∧ false ⇔ false

14.6 P ∨ true ⇔ true

14.7 P ∧ ¬ P ⇔ false

14.8 P ∨ ¬ P ⇔ true

www.manaraa.com

25

14.9 P1 ∧ (P1 ∨ P2) ⇔ P1

14.10 P1 ∨ (P1 ∧ P2) ⇔ P1

Examples to use this transformation rules can be found in Elmasri [2000].

Relational algebra optimization algorithms can be found in smith

[1975].

All these rules can be used heuristically to transform a query into another

simpler form. Our simpler target form must be in compliance with the

following heuristic rules:

• Perform joins, which lead to a smaller size of intermediate result

first.

• Perform selection and projection as early as possible to minimize

the processing time.

• Avoid Cartesian product operations

• Identify sub-trees whose operations can be pipelined.

In order to accomplish these heuristic deductions a heuristic engine have

to be used as illustrated in Figure 2.1.

2.4.2 Query trees

This is based on the representation of the query as a graph, called a query

graph or connection graph [Ullman, 1982]. SQL queries are transformed

into relational algebra query that can be further transformed into a query

www.manaraa.com

26

tree. Tremendous number of query trees can represent some complicated

queries. In order to minimize the space that have to be explored, the

optimizer have to consider many constraints such like:

Selection and projection constraint:

Selection and projection within a query tree have to be moved all the way

down the tree as much as possible. In other words, selection and

projection have to be done before the joining. This will save the

unnecessary processing time for the unrelated tuples and unrelated

attributes too. A restructuring algorithm to implement that was written by

Ullman [1982].

The following database schema will be used for the few next examples:

Employee (Ename, Eage, Esal, Edno)

Department (Dno. Dname, Dfloor, Dano)

Account (Ano, Atype, Abalance, Abno)

Bank (Bno, Bname, Baddress).

As an example consider the following query:

Select Ename, Dfloor

From Employee, Department

www.manaraa.com

27

Where Employee.Edno=Department.Dno and Esal > 50,000

There are many ways to represent the query tree for this SQL query as

depicted in Figure 2.4.

www.manaraa.com

28

Figure 2.4. Query trees

As can be seen from Figure 2.4 that the most efficient method or plan is

the one in the right-hand side where projection and selection is performed

first.

Assume there is a multiple relations that are needed to be used in multiple

joins in a query. Then we may benefit from some algebraic properties of

join to determine certain facts. As an example, Commutativity (R1 R2

= R2 R1) can be used to determine which relation should be inner

relation and which relation should be outer relation in the join.

As a second example, Associativity ((R1 R2) R3 = R1 (R2 R3))

can be used to determine the order at which joins must be executed,

usually the most inner joins will be executed first.

π
Ename,Dfloor

σ
Esal > 50,000

Emp Dept

π
Ename,Dfloor

σ
Esal > 50,000

Emp

Dept

π
Ename,Dfloor

σ
Esal > 50,000

Emp

Dept

π
Dno,Dfloor

π
Ename,Edno

π
Ename,Edno,Esal

Edno=Dno

Edno=Dno Edno=Dno

www.manaraa.com

29

The alternative trees that might be formed using the associativity and

commutativity properties are enormous. The following constraint helps to

minimize them.

Cross product should not be used:

Cross product is never to be used unless it is stated explicitly to do so.

Relations within a query are concatenated through a join. As an example,

consider the following query.

Select Emane, Dfloor, Abalance

From Employee, Department, Account

Where Employee.Edno=Department.Dno and

Department.Daco=Acount.Ano.

Three different query trees as shown in Figure 2.5 can form this query.

 Figure 2.5. Join query trees

Emp Dept

 Edno=Dno

 Dano=Ano

Acnt

Acnt Dept

 Ano=Dano

 Dno=Edno

Emp

Emp Acnt

 Dano=Ano and Dno=Edno

Dept

www.manaraa.com

30

Notice that the last tree posses a cross product. Therefore, the space

search module will ignore it. This example illustrates the use of

associativity property. Cross product join is always not considered

because of its huge size result.

The inner operand in a join have to a relation:

Inner operand of a join must be a relation. We must prune trees with

intermediate result as inner operand. It has been proved by simulation that

using relations as inner operand in a join increases the use of indexes and

at the same time intermediate results that are located as outer operand will

facilitate execution of the joins in a pipelined manner.

As an example consider the following example:

Select Ename, Dfloor, Abalance, Baddress

From Employee, Department, Account, Bank

Where Employee.Edno=Department.Dno and

Department.Dano=Account.Ano and Account.Abno=Bank.Bno

Figure 2.6 shows the three possible queries arrangement to execute this

query.

www.manaraa.com

31

Figure 2.6. Left deep, right deep, and bushy trees

Note that the first tree in Figure 2.6 satisfy this constraint. The first tree is

called left deep tree of multiple joins. The second tree is called right deep

tree. And the third is called bushy tree. Discussion of these trees can be

found in Ioannidis [1991].

2.5 Method Structure

Method structure is necessary to be applied when considering the type of

join we would like to perform. There are many types of joins. But the

Edno=Dno

 Edno=Dno

 Ano=Dano

Emp Dept

 Edno=Dno

 Dano=Ano

Acnt

 Abno=Bno

Bank

 Abno=Bno

Bank

 Abno=Bno

 Dano=Ano

Acnt Bank Emp Dept

Acnt

Dept Emp

www.manaraa.com

32

most famous three types of joins are nested loop join, merge join, and

hash join. One of them is more optimal than the others within its context

of use. For abbreviation purposes two methods only will be discussed,

they are nested loops and merge join:

2.5.1 Nested loops

When we want to join two relations, the relation that we have its tuples as

a basement for comparison is called external relation and it’s tuples are

read first. The relations from which tuples are compared to external

relation tuple’s are called internal relation, and its tuples are read

secondly.

In nested loops we compare every single tuple in the external relation

with every single tuple in the internal relation. We first chose a tuple from

the external relation then compare it with all the tuples from the internal

relation one by one. If the internal relation is sorted in the joining key and

the joining operator is of equality type with no repetition, then the

complexity will be n1+n2. If the internal relation is not sorted, then the

complexity will reach up to n1*n2 in the worst case. Where “n” represent

number of blocks.

www.manaraa.com

33

2.5.2 Merge Join

If the external relation along with the internal relation are both sorted in

the joining keys, then we may perform the join most efficiently by

scanning the external relation only once with also scanning the internal

relation only once. This method of join is recommended when both joined

relations are sorted as a primary key in the joining key.

There has been suggested other types of joining such like the hash

partitioning join. In this joining we partition the tuples of each of the

relations into many sets that have the same corresponding hash value with

regard to the join attributes. But the most popular types of joins are nested

loops and merge joins.

Which to choose, depends in many factors such like. Do we have indexes

for the joining key? If we do, is it for both relations or just only for one of

them? In case that we do not have indexes for neither one of the joined

relations, then we have to find the cost of sorting. Two options for

sorting, either sort one relation or sort two relations. Implement internal

or external sorting [Knuth, 1973]. And for each option, find the cheapest

cost with regard to nesting loops join or merge join to decide what the

most cheapest combination will be? The optimizer should be able to

www.manaraa.com

34

decide the join method. Which depends on the presence of indexes, type

of join if it is of equality or in-equality type, and the size of the relations.

2.6 Size & Selectivity Estimators

The selectivity of an attribute from a relation that participates in a join is

necessary to estimate the size of the intermediate result and the size of the

final result. Real life application may depend in frequency of more than

one individual attribute. But all existing DBMSs that exist now do not

support multiple attribute frequency that may be needed for a join due to

the fact that it is expensive to have them for a single relation. Most

commercial systems depend on a technique called histogram, which we

will discuss. Histograms contain the database statistics about the

frequency of the database attributes. There is a trade-off between the

accuracy of the statistics and the cost of maintaining it [Piatetsky, 1984].

Histogram techniques classify a number of frequency values in buckets.

For an attribute A in a relation R, the domain of A is grouped into buckets.

Each bucket B in the histogram will have many different values

frequencies. That is, for a value Vi∈Bi, the frequency fi of Vi is denoted

by ∑Vj∈B fj /|B|.

Some DBMSs assume uniform distribution assumption over all the values

in a relation. These types of histogram are called trivial [Selinger, 1979].

www.manaraa.com

35

The error percentage in estimation in this type of histogram is very high

[Christodoulakis, 1984].

To reduce the error margins, we group the frequency of attributes for a

domain in several numbers of buckets. Each bucket estimation is done

separately. In this way the error in the estimation is reduced. As an

example, suppose we have a relation as depicted in Table 2.1.

Table 2.1. Employee relation

Emp_No Name Dept Salary

113 Ahmad Education JD 6000

125 Hassan Health JD 4500

548 Ali Admin JD 6500

284 Omar ISO JD 7000

246 Khalid Health JD 3000

684 Sami Education JD 4000

964 Hamad ISO JD 5500

574 Emad Supply JD 6000

347 Majed Finance JD 7000

246 Hiam Education JD 8500

475 Jasem ISO JD 4700

254 Nadiah Supply JD 6500

Frequency of department in Employee relation is illustrated in Table 2.2.

Table 2.2. Department frequency in employee

Department Frequency

Admin 1

Education 3

Finance 1

Health 2

ISO 3

Supply 2

www.manaraa.com

36

Now the frequency is grouped into consecutive buckets as shown in

Table 2.3, which called equi-width histograms [Kooi, 1980]. This type of

histograms is the most popular type that is used in most commercial

DBMSs.

Table 2.3. Equi-width histogram

Buckets Department Frequency

in Bucket

Approx.

Freq.

Admin 1 1.66

Education 3 1.66

Bucket 1

Finance 1 1.66

Health 2 2.33

ISO 3 2.33

Bucket 2

Supply 2 2.33

The margin of error could be further reduced. You may notice that range

in equi-width histogram is taken serially. Equal numbers of entries are

included in each bucket, independent of the frequency number of these

values. If we take in consideration the number of frequency for each entry

in the buckets, and form buckets based in those (numbers of frequency)

where each bucket have to contain a specific equal number of total

frequencies, then the estimation will be more accurate as illustrated in

Table 2.4 . This type is called Equi-depth histogram [Piatetsky, 1984].

Note that frequencies are grouped into non-consecutive range of

www.manaraa.com

37

frequencies. This type of histogram adds more complexity to the

generating algorithm. Hence, it is not used in commercial DBMSs.

Table 2.4. Equi-depth histogram

Buckets Department Frequency

in Bucket

Approx.

Freq.

Bucket 1 Admin 1 1.5

Bucket 2 Education 3 3

Bucket 1 Finance 1 1.5

Bucket 1 Health 2 1.5

Bucket 2 ISO 3 3

Bucket 1 Supply 2 1.5

More advanced histogram approaches have been suggested such like

serial histogram [Ioannidis, 1993]. In this histogram all the buckets

frequencies have to be ordered and maintained ordered serially

throughout the life of the related relation. That is all frequencies in one

bucket have to be greater than or less than all other frequencies in

different buckets. Since the frequency of an attribute is independent of it’s

value, it is hard to maintain them grouped in order all the time.

To improve this histogram, an extension of serial histogram has been

suggested, it is called End-biased histogram. This histogram uses different

buckets for the highest and lowest values of frequencies and keeps the

mean frequencies in a separate bucket. In this way all frequencies are kept

serially and the complexity that exist in the previous histogram is

eliminated. This histogram is simple and preferred over serial histogram.

www.manaraa.com

38

Other types of histograms like piecewise linear histograms are discussed

by Yu [1994].

The size of the intermediate relation in a join is calculated using size

estimator, if necessary, by using the information obtained from the

selectivity estimator [Lipton et al., 1990].

2.7 The Cost Model

During execution of a query many factors have to be considered in

estimating the cost. Some of these factors have been discussed thoroughly

through out this dissertation. These factors are as follows:

• Communication cost if necessary: this cost is the dominant factor in

distributed systems, WAN, and MAN.[Valduriez, 1984]

• Memory cost: The number of memory buffers needed during the

query processing.

• Intermediate files storage cost.

• Computation cost: which includes sorting, merging, and searching.

• Secondary storage media access cost: The cost of accessing

secondary storage such like hard disks or tapes. This cost depend in

the type of access mechanism such like: accessing through index or

not. Primary of secondary indexes. Contiguous memory location or

random … etc.

www.manaraa.com

39

2.8 The Planner

The planner duties is to identify the possible promising solution plans

explored by algebraic space and method structure modules, then pass

them to the cost module to find which one is the cheapest.

The cost module calculates the cost of each received plan based on data

obtained from size estimator and selectivity estimator modules.

There are different strategies that a planner could employ. The most

popular strategy is the dynamic strategy, which is used by most

commercial DBMSs. It will be discussed later in this section.

Other strategies are based on random algorithms like iterative

improvement [Swami, 1989], simulated annealing [Ioannidis, 1987] and

two phase optimization (2PO) algorithm [Ioannidis, 1990]. They operate

by searching a graph where nodes represent alternative paths and plans

that can be used to answer the query. Each node is associated with a

predefined cost. The goal of these algorithms is to try to find the cheapest

path (Plan) with minimum time. The returned path (plan) is not

guaranteed to be the cheapest, but it is efficient in dealing with queries

that have huge numbers of joins (ten or more joins). For small number of

joins it is preferred to use strategies that are based on dynamic algorithms,

as they give more efficient cheapest plan to solve a given query. Random

algorithms are not of our concerned here at this dissertation.

www.manaraa.com

40

Lately, some researchers have tried to explore the possibilities of applying

some heuristic algorithms such like A* algorithms to find the cheapest

query plan solution [Yoo, 1989].

In what follows we will discuss the most popular strategy for the planner

in the optimizer, which is based in dynamic algorithm.

 The dynamic algorithm R was first written by Selinger et al. [1979] and

since then it was used in commercial systems in different appearances.

This algorithm builds all the promising query trees, pruning all trees that

are not found to provide an optimal plan.

Algorithm 2.1 illustrates the steps that are implemented in “R” algorithm.

Actions implemented by R algorithm are grouped as per the following

steps:

Step 1. All the possible access to all relations in the query are

identified. Their cost is obtained from the cost module. All this

information is retained in a table to be used in step 2.

Step 2. For each join in the query, all possible ways to perform the join

between two relations, with the help of the relations access

methods stated in step 1, are examined and it’s cost is

calculated.

www.manaraa.com

41

Algorithm 2.1. R Algorithm

Input : QT : Query tree with n relations

Output : The result of algorithm execution

Begin

 For each relation Ri ∈ QT do

 Begin

 For each access path APij to Ri do

 Determine cost(APij)

 End-for

 Best_APi ← APij with minimum cost

 End-for

 For each order (Ri1, Ri2, ... , Rin) with i =1, ... , n! Do

 Begin

 Build strategy (...((best APi1 Ri2) Ri3) ... Rin
)

 Compute the cost of the strategy

 End-for

 Output ← strategy with minimum cost

End {R Algorithm}

Step 3. The paths and the promising query trees are evaluated using the

costs obtained in step 2 to identify the cost of each plan with

different combination.

www.manaraa.com

42

Step 4. The cheapest or best plan from step 3 is chosen for execution.

There is one important factor within the implementation of this algorithm

called interesting or attractive order. The sorting order of an intermediate

relation generated by an intermediate join might be in the desired order in

which subsequent join might be based on [Ioannidis, 1990]. One should

keep in mind, if this can be fulfilled, it will save the sorting time for

merge-join or nested loop. The path through which this attractive order

can be achieved may require more cost than other paths, but it may save

more subsequent cost in sorting time than choosing a cheaper path that

may require more time for sorting.

The algorithm’ first loop evaluates the cheapest cost to each relation

separately.

The second loop will test the paths of n! Permutation for n relations. The

test start with the most inner joins in the loop. It is implemented by testing

each relation join with each other relation before adding the third, then the

forth, and so on. Until all permutations are tested. The algorithm prunes

paths with cross product, and also prunes paths that are commutatively

equivalent but with higher cost. Therefore, the total tested paths will end

up to 2n rather than n!.

www.manaraa.com

43

3. METHODOLOGY

3.1 TEMPORAL RELATIONAL DATABASE SCHEMA

& MODELS

3.1.1 Overview

Temporal enabled file structure of temporal relational database provides a

solid concrete foundation for query processing and optimization.

We will discuss possible efficient file structures for different types of

temporal relational databases. This discussion will be general.

Meanwhile, we will concentrate in our recommended file structure that

works efficiently for our indexing structure and joining algorithms. Also

we will discuss temporal file structure. And finally, available temporal

relational database schemes will be discussed along with our suggested

enhancement to the existing schemes in which it will accommodate the

temporal nature adequately. Temporal models and schemes have been

discussed by Segev [1988], Delaney [1992], Elmasri [1993], and Gadia

[1988A].

www.manaraa.com

44

3.1.2 Temporal Relational Database File Structure

We have to use fixed length not spanning records for the database file

structure design. This will enable us to use indexing and sorting without

moving the data from its original memory location in case of entering the

ending time stamp (for both time stamps, valid and transaction

timestamps). Using fixed length not spanning records will eliminate extra

processing time that may be required using other dynamic length

spanning records. Also it will facilitate an easy file re-organization and

garbage collection during the regular temporal database management

information system maintenance.

Time stamps in regular traditional databases are of fixed size and format

(dd-mm-yyyy, hh-mm-ss). While real life applications require different

granularity for different application. As an example, consider a personnel

module in an application for a firm. Hiring new employee would require

time stamp of “day” granularity. If we include hours, minutes, and

seconds, we would cause a waste of memory space, in addition to

unnecessary extra processing time during query run-time. Also, there are

application that are based on fiscal year (e.g. budget, planning ...etc). One

could imagine the inconvenience of using more than “Year” granularity in

a firm computerized applications. Especially if that firm have many

branches with many departments.

www.manaraa.com

45

Temporal aspect is applied only to all fields that are subject to change in

status. In order to record the history for a specific attribute in the

database, all actions done to this attribute have to be recorded. This will

provide us with a powerful analysis tool from which we can predict trends

and guide our decision. Since temporal database applications have to have

time stamps accompanied with all activities, it would be desirable to

minimize time stamps as much as possible.

Temporal database management systems need to facilitate built-in data

constructs that represent all possible granularities with minimum possible

usage of bits.Table 3.1 shows the suggested time granularity and its

required number of bytes for representation.

Table 3.1. Needed bytes for different granularities

Granularity

Included

Granularities

(By Default)

Time Format

Needed

Bytes

Possible

Range

From – To

Year None yyyy 1 2000-2255

Year (Ext.) None yyyy 2 0000-9999

Month Year yyyy/mm 2 2000/01-2255/12

Month (Ext.) Year yyyy/mm 3 0000/01-9999/12

Day Year-Month yyyy/mm/dd 3 2000/01/01-2255/12/31

Day (Ext.) Year-Month yyyy/mm/dd 4 0000/01/01-9999/12/31

Hour Year-Month-Day yyyy/mm/dd

/hh

4 2000/01/01/00-

2255/12/31/23

Hour (Ext.) Year-Month-Day yyyy/mm/dd

/hh

5 0000/01/01/00-

9999/12/31/23

Minute Year-Month-Day-

Hour

yyyy/mm/dd

/hh/nn

5 0000/01/01/00/00-

9999/12/31/23/59

Second Year-Month-Day-

Hour-Minute

yyyy/mm/dd

/hh/nn/ss

6 0000/01/01/00/00/00-

9999/12/31/23/59/59

www.manaraa.com

46

As can be seen form the table, if the required granularity is a day for a

certain application, then year and month have to be included to guarantee

the uniqueness of the day. If we do not include year and month, then they

may be repeated with previous or next months in previous or next years.

The same rule applies for all granularities. If we abide by the above table

when designing a temporal application, we will improve usage of memory

by reducing it. Consequently, optimize the processing time.

Table 3.2 lists the improvement in the required memory in comparison

with the traditional Relational Database Management System software,

Microsoft Access. Improvements are determined by calculating the

decrease percentage in size. Microsoft Access uses fixed size 8 bytes to

represent the date as specified per Microsoft technical instruction in

Microsoft Access 97.

Table 3.2. Memory comparison between Access and the suggest model.

 Granularity

Access

Size

(In Bytes)

Suggested

New Size

(In Bytes)

Approximate

Improvements

 Year 8 1 88 %

 Year (Ext.) 8 2 75 %

 Month 8 2 75 %

 Month (Ext.) 8 3 63 %

 Day 8 3 63 %

 Day (Ext.) 8 4 50 %

 Hour 8 4 50 %

 Hour (Ext.) 8 5 38 %

 Minute 8 5 38 %

 Seconds 8 6 25 %

www.manaraa.com

47

Three facts can be extracted from the above tables (Table 3.1 and

Table 3.2). First, granularity can be set according to the application needs.

Second, save in memory ranges between 25 % - 88 % are achieved by

using the suggested model. Third, Saving in the size of time stamps will

lead to less processing time. Therefore, it will improve the performance of

the queries. Discussion of time data was carried out by Skjellaug [1997]

Consideration of optimizing the usage of memory has to be considered in

temporal relational database since time stamps will be used heavily in

temporal databases.

Represented time fields have to be reduced to save space since temporal

databases are usually huge in their size. Great amount of memory would

be wasted if we use one defined time stamp regardless of the needed

granularity and that will affect the performance negatively, in addition to

wasted memory. Flexible size capability for the size of the temporal time

stamps according to necessity would save memory and improve

performance of the queries.

3.1.3 Temporal Relational Database Schemes

Many literatures have suggested different types of relational database

schemes. Steiner [1998] have discussed many data models. Within his

temporal relation data models, he has discussed schemes that are based on

www.manaraa.com

48

tuple time stamping, and attribute time stamping. Detailed evaluation for

different temporal databases are discussed by Ahn [1986]. Experiments

on the performance of different types of temporal databases were carried

out by Goralwalla [1995]. Similar work has been done in this dissertation,

but we added our test result with regards to memory usage.

Basically, there are two main approaches for modeling temporal relational

databases [Goralwalla, 1995] and [Ahn, 1986]. They are as follows:

1- Attribute time stamp: the time is attached to attribute values of a

relation and the histories of an attribute are included in a set of

triplet-valued. Example is shown in Table 3.3 . In this example a

triplet is of the form <[l, u), v> where l represent lower time

bound, u represent upper time bound, and v represent the value of

the attribute.

Table 3.3. Employee relation

E# Ename Department Salary

111 Hamd {<[1984/01,1985/01), Shoe>;

<[1985/01,now], Toys>}

{<[1984/01,1985/06), 20K>;

<[1985/06,now], 25K>}

222 Ayah {<[1986/01,now], Sales>} {<[1986/01,now), 30K>}

333 Sami {<[1989/01,now], Toys>} {<[1989/01,1990/06), 32K>;

<[1990/06,now], 40K>}

2- Tuple time stamp: It is divided into two subcategories:

(A)- where a single relation is used to hold all its pertaining time

varying attributes along with non-temporal attributes. Time stamps are

represented in “From” and “To” fields. The time stamps are used to

www.manaraa.com

49

indicate changes in any temporal attribute within a tuple in a relation.

Table 3.4 depicts this type.

Table 3.4. Tuple time stamping

SSNo Ename DoB Salary Dept From To

111 Muna 1973/01/14 6,000 D1 2000/01/01 2000/05/31

111 Muna 1973/01/14 6,000 D2 2000/06/01 2000/12/31

111 Muna 1973/01/14 7,000 D2 2001/01/01 2001/06/30

222 Hani 1970/03/07 5,000 D1 2001/04/01 Now

B - Time varying attributes are distributed over multiple relations, and

non-temporal attribute are gathered in separate relation. To illustrate that,

we used the same example in Table 3.4. The relation is reorganized to fit

this scheme as in Tables 3.5.

Table 3.5a. Non-temporal attribute

SSNo Ename DoB

111 Muna 1973/01/14

222 Hani 1970/03/07

Table 3.5b. Salary temporal attribute

SSNo Salary From To

111 6,000 2000/01/01 2000/12/31

111 7,000 2001/01/01 2001/06/30

222 5,000 2001/04/01 Now

www.manaraa.com

50

Table 3.5c. Department Temporal attribute

SSNo Dept From To

111 D1 2000/01/01 2000/05/31

111 D2 2000/06/01 2001/06/30

222 D1 2001/04/01 UC

First approach uses Non-First Normal Form (N1NF) where second

approach uses First Normal Form (1NF). Many researchers like Gadia

[1988B] support first approach. Second approach is supported and

modeled by Snodgrass [1987].

Attribute time stamping needs more work for incorporating indexing for

query optimization and other works related to updating. Great amount of

overhead is expend for operating functions like Pack, Unpack, Triplet-

formation, and Triplet-decomposition. For more details refer to

Goralwalla [1995].

Also, Attribute time stamping violate the first normal form where the only

attribute values permitted by 1NF are single atomic or indivisible values.

For these reasons, Attribute time stamping is excluded from our

consideration for the indexing and joining algorithms. That’s will leave us

with option 2 (tuple time stamping). In what follows we will compare

between the two possible types of tuple time stamping. And that is:

1st- A single relation is used to hold all its pertaining time varying

attributes along with non-temporal attributes. Time stamps are

www.manaraa.com

51

represented in “From” and “To” fields. The time stamps are used

to indicate changes in any temporal attribute within the relation.

We will refer to this type as (TTSR) abbreviation for Tuple

Timestamp Single Relation.

2nd- Time varying attributes are distributed over multiple relations,

and non-temporal attributes are gathered in separate relation. We

will refer to this type as (TTMR) Tuple Timestamps Multiple

Relations.

Fortunately, results with regards to performance are already available in

[Goralwalla, 1995]. Different queries that may cover most combination of

possible requirement were tested against TTMR and TTSR. The tests

cover current status data and historical data. It has been found that TTMR

surpass TTSR order of magnitudes in performance for both current status

and historical data, with regard to execution time.

But comparison with regards to used memory is not available and will be

carried out in this dissertation.

If we assume that a database D consists of a set of relation

D={T
1
, T

2
, T

3
, … , T

n
}

Each relation consists of different fields, these fields can be grouped into

4 main groups, they are Key field/s, Non-Temporal fields

(Unchangeable), Temporal fields, and Timestamp. They are represented

www.manaraa.com

52

by K, U, M, and L respectively. Key fields are always non-temporal

fields. Each group may consist of at least one field or more fields. Hence:

K = {k
1
, k

2
, k

3
, … , k

n
}

U = {u
1
, u

2
, u

3
, … , u

n
}

M = {m
1
, m

2
, m

3
, … , m

n
}

L = [l
1
, l

2
], where l

1
is the lower bond (start time) and l

2
 is the upper bond

(end time).

Therefore: A relation consists of a set of subsets as follows:

T={K, U, M, L}

Let S
i
 : Size of field i in bytes where i may be K, U, M, or L field

 C(t) : The cost of a tuple in total number of bytes, t may be a

 tuple of TTMR type, or TTSR type.

 P : Probability for a temporal attribute to be updated (changed)

 measured in number of times it may be updated within a

 specific period of time.

The cost of representing the temporal relation in TTSR form will be:

 X Y

C (TTSR) = ∑ Si * ∑ Pi …….. (1)

 i=1 i=1

Where x represent number of all fields in a tuple and y represent temporal

fields only. Suppose that y
1
 ∈ M and y

2
 ∈ M, then ∃ ¬ C(y

1
)⇒C(y

2
), that

www.manaraa.com

53

is, we assume that temporal attributes are independent and change in one

temporal attribute do not imply change in another.

The cost of representing the temporal relation in TTMR form will be:

 Y

C (TTMR) = ∑ (SK+Si+SL) * Pi …….. (2)

 i=1

A separate relation exists for non-temporal attribute’ tuples. Since there

exist only one tuple for every key field, the size of this relation is

considered to be negligible in comparison to temporal relations where we

have indefinite numbers of tuples for every key field.

The total save in memory (space) for a certain period of time, say L = [l
1
,

l
2
] , can be calculated as follows:

C (TTSR) - C (TTMR)
___ C (Improvements) =

C (TTSR)
…….. (3)

With respect to assumptions in formula 1 and formula 2 above. It can be

seen from formulas 1, 2, and 3 that the save in memory would be directly

proportional to P
i
 and to the number of attributes in M set.

Testing:

The above formulas (formulas 1, 2, and 3) have been used to carry a

comparison test between TTSR approach and TTMR approach using the

www.manaraa.com

54

same schemes that have been used in execution performance test by

Goralwalla [995]. These schemes are as follows:

TTSR:

Emp (ssno, ename, address, salary, skills, dname, from, to)

Dept (dno, dname, budget, manager, from, to)

Proj (pno, pname, budget, from, to)

TTMR:

Emp U (ssno, ename, address)

Emp M1 (ssno, salary, from, to)

Emp M2 (ssno, skills, from, to)

Emp M3 (ssno, dname, from, to)

Dept U (dno, dname)

Dept M1(dno, budget, from, to)

Dept M2(dno, manager, from, to)

Proj U (pno, pname)

Proj M1(pno, budget, from, to)

The sizes in bytes for each field are as follows:

Attribute

Size in

bytes

www.manaraa.com

55

Ssno 2

Ename 4

Address 4

Salary 6

Skills 7

Dname 7

From 2

To 2

Dno 2

Dname 3

Budget 6

Manager 7

Pno 2

Pname 3

The probability of temporal attribute changes is measured by the

frequency of changes per year. For simplicity it is assumed to be one

change for all the temporal attributes per year independently.

Calculating the cost of storage using formulas 1-3 above according to the

above assumptions have been carried out. The result of the calculation

shows that save in storage cost ranges from 20%-71% in favor of TTMR

approach as illustrated in Table 3.6.

Table 3.6. Improvement of TTMR schema over TTSR schema.

Relation Name No. of Temporal

Attributes

Memory Save

%

Emp 3 71 %

Dept 2 43 %

Proj 1 20 %

www.manaraa.com

56

Also, It has been proved that saving in space may exceed 100% with very

higher P
i .

The tests for memory usage were chosen to be compatible with the testing

environment of the test done with regard to the execution time

performance [Goralwalla, 1995]. Most probably other tests for other

applications will give different results. Also, changing P
i
 will affect the

result. In fact, the real test will be the real life applications.

In regular snapshot (transaction) database, updating are done easily

because there is only one key field that is never changed. Therefore;

regular daily transactions (Add, Delete, and Update) are implemented in a

straightforward manner.

Unfortunately, this is not the case in temporal databases. Assume a non-

temporal relation in non-temporal database that has only one key field. In

order to implement the same relation as a temporal relation in the

corresponding temporal relational database, then we have to add extra 3

key fields in addition to the main key field and that will total up to 4 key

fields. These key fields are as follows:

• Main Key field, also called Surrogate in temporal database,

• Time Attribute field,

• Starting Time,

www.manaraa.com

57

• and Ending Time.

To deal with all of these four keys in regular daily transactions (Add,

Delete, and Update) and keeping the existing sorting intact for efficient

optimized query processing is a challenging task. This task is much easier

for transaction (roll back) databases since we anticipate the transaction

start timestamp to take a rhythmic pattern. But it would be much more

difficult for valid time (historical) databases were neither start timestamp,

nor ending timestamp are predictable. Therefore; indexing and file

structure for valid timestamps are forced to be different than those that are

used for transaction timestamps.

In this dissertation we are concerned with relational roll back databases.

In which we support through indexing methodology explained in

section 3.2. And also supported in special algorithms for joining in

section 3.3. They all come together as one strongly related subject in

optimization of temporal relational queries.

Therefore, in this section we will elaborate only on regular daily

transactions that are related to roll back databases that are based on

transaction timestamps.

In Figure 3.1 we illustrate the suggested processing of regular daily

transactions with regard to temporal databases that are used for roll back

databases.

www.manaraa.com

58

Figure 3.1. Daily transactions in roll back database

We use quasi-append only approach for roll back relations.

We explain how this model works through the following example:

Example: For simplicity, assume that current time is 2001-02-01, the

company starts operation in 1997-01-01, and changes in salary

Snapshot Relation
Temporal Interfacing

Model

Append Modify Delete

Append

Delete

Modify
Beg Time

Roll Back Relations

No

No

Append to end

of table
Append as per

current index

Physical
Deletion

Logical
Deletion

Normal
Modification

No
Normal

Modification

Delete and
Append

www.manaraa.com

59

or departments happens in the beginning or the middle of the

year as illustrated in Table 3.7.

Table 3.7. Employee snapshot relation

SSN Name DOB Hire-Date Salary Sal-TS Dept Dep-TS

111 Ahmad 1960-05-27 1997-01-01 JD 6000 2000-02 D1 1998-08

222 Mona 1968-11-04 1997-01-01 JD 7200 2000-02 D3 1997-01

333 Khalid 1958-07-13 1999-01-01 JD 5520 1999-07 D2 1999-07

The following abbreviations are applicable for the temporal relations:

 TS : Transaction Time Start

 TE : Transaction Time End

 S : Surrogate (Key field in temporal relation)

 A : Temporal Attribute

Table 3.8. Employee-salary temporal relation

TS TE S A

1997-01 1997-07 111 JD 4000

1997-01 1998-01 222 JD 4500

1997-08 1998-01 111 JD 4500

1998-02 1999-01 111 JD 5000

1998-02 1999-01 222 JD 5000

1999-02 2000-01 111 JD 5500

1999-02 2000-01 222 JD 6000

1999-07 UC 333 JD 5520

2000-02 UC 111 JD 6000

www.manaraa.com

60

2000-02 UC 222 JD 7200

Table 3.9. Employee-department temporal relation

TS TE S A

1997-01 1998-01 111 D2

1997-01 UC 222 D3

1998-02 1998-07 111 D3

1998-08 UC 111 D1

1999-07 UC 333 D2

Append transactions:

As illustrated in Figure 3.1. The append transactions are added to

snapshot relation with respect to existing index key, usually its

correspond to surrogate key in temporal relation. Additions of records to

corresponding temporal relations in roll back relations are done through

adding the new records to a buffer table called Temporal Buffer Table

(TBT). This table are vital in temporal databases for two reasons. First, It

is a must in multi-user environment to synchronize work and append them

from that buffer to the related relation one by one and allow to

synchronize locking and unlocking to the related temporal relation.

Second, this buffer table is closed at the end of the specified one time

granularity (chronon). At the same time another TBT is opened for the

www.manaraa.com

61

next chronon. Before we transfer the appended data from the closed TBT

into the related temporal relation, we can sort the records in a second key,

third key, or forth. Therefore; create a primary index with multiple keys

that helps to accommodate different join process, as we will see in section

3.3. This will help in a query optimization.

Delete transactions:

Deletion of records in snapshot relation can be implemented physically.

The related records in the roll back relations will be deleted logically by

marking out the deleted records as deleted. These logically deleted

records can be permanently deleted during the maintenance period for

temporal database.

Modifying transaction (updating):

Since this scheme is build on quasi-append only database and time stamps

are based on transaction time, then updating a temporal attribute with a

new value will be dealt with in two steps. The first step is to locate the

corresponding record in roll back relations and close it by entering the

(current time – one chronon) as ending timestamp. The second step will

be to append a new record to the end of quasi-append only temporal

relation. This record will have a Starting timestamp and “UC” ending

www.manaraa.com

62

timestamp. Also modify the related TS field in snapshot relation

accordingly.

Main key along with related TS value can be used to locate a record in the

first step. As an example, suppose we have reached the date of June 2001

and in the snapshot relation “Mona” has a raise in salary from the existing

JD 7200 into JD 8000. We can see from the relation in Table 3.7 that

“Sal-TS” value is 2000-02 and her “SSN” is 222. Hence we go to

Employee-salary temporal relation in Table 3.8 and locate “TS” with

value of 2000-02 and “S” value equal to 222. We change “TE” value into

2001-05 and append a new record through TBT with the following values

2000-06, UC, 222, and JD 8000 for “TS”, “TE”, “S”, and “A” values

respectively. We also updated “Salary” and “Sal-TS” values in Employee

snapshot relation from the old values into a new values of JD 8000 and

2001-06 respectively.

Updating the “TS” value in temporal relation have to be done with

extreme caution. It is implemented by marking up the modified record

with deleted and adding up the corrected record into a dedicated overflow

table in order to keep the primary key index intact physically. These kinds

of overflow tables can be integrated with related temporal roll back

relations during the maintenance phase of the temporal database.

www.manaraa.com

63

 Temporal model does all these transactions automatically. Users do not

have to worry about these details. The user will be dealing with an

abstract model called Temporal Interfacing Model (TIM). This model

reveals the valid current snapshot data from the snapshot relation to the

user. The user may update the data and press on save or modify (update)

button, TIM will know automatically what has been updated and carry out

the necessary steps as explained in the updating procedures above.

TIM will react to entering new records in a similar way and will perform

all necessary steps toward snapshot relation and the temporal roll back

relation automatically. The XXX-TS fields in the snapshot relation can be

hidden in a system table. Table 3.9 represent Employee-department

temporal relation.

www.manaraa.com

64

3.2 INDEXING

3.2.1 Introduction

Many temporal relational indexing schemes have been developed. Some

of these schemes are designed to fit certain needs. Other schemes are

designed generally. Nascimento [1995] used shared leaves between

transaction time and valid time to save substantial space in bitemporal

index. He used pointers extensively in his design in which it will add

more complexity in the algorithm design.

Kouramajian [994] have designed an indexing structure called Time

Index+. It is designated for data that overlap very often. In his design he

used logical partitioning for buckets with regards to timestamps. This

index scheme requires a huge storage space. Therefore, it is difficult to be

updated.

Many other researchers have discussed the possibilities of using basically

similar techniques like the technique used by Kouramajian [1994]. These

www.manaraa.com

65

suggested techniques are Time Index, Packed R-Tree, and Parameterized

R-Tree. Other suggested indexing structures are explained by Bozkaya

[1998] and Spiteri [1998].

During our extensive investigation in temporal database indexing. We

have not found any suggested index methodology that uses a hash

function in indexing temporal relational database. This type of suggested

index might be used in our model to support the joining algorithms in

section 3.3. This scheme understructure was introduced in section 3.1

(Temporal Relational Schema and Models).

In append only databases only appending data is allowed, no

modifications or deletion is allowed. The start timestamp for an event is

entered upon the creation of tuples in transaction databases and the end

timestamp is left open. When we need to indicate the change of a

temporal attribute status, a new tuple with a new start timestamp is

created without any change to the old tuple status. The end timestamp in

the old record will be left unchanged, it will be left with open time

interval. Closing time for that attribute will be calculated through finding

the next corresponding record start timestamp!

The previous append-only database was modified to accommodate only

one slight change. That is, closing time (end timestamp) for the old record

can be modified to indicate the closing time when a new tuple for the

www.manaraa.com

66

same temporal attribute is created with it’s start timestamp equal to the

old record end timestamp plus on unit of used granularity time (Chronon).

This new modified scheme is called quasi-append only database [Tansel,

1993].

In this dissertation a simple temporal index structure have been designed.

To implement our new suggested index we will use quasi-append only

temporal relational database.

As it will be seen in this section, this design used two generic indexes

approaches mixed together to form a straightforward simple efficient

indexing approach for temporal relational databases.

Temporal databases main feature that distinguishes it from other

databases is the fact that it depends on time more than regular classical

database approaches. Temporal databases are based mainly on sequence

of events. The latest event comes in after another earlier one, and so on.

To create serial events in order to study its effect in connection to other

events, one have to record the time at which each event took place.

Timing could be represented in many ways. Most literature that have been

written with regard to indexing have ignored the importance of the

representation of time, and used real number to represent the sequence of

events (Temporal Aspect) in their researches while representation of time

have a major role in efficient temporal indexing. The suggested time

www.manaraa.com

67

representation that we suggest in our index was previously explained in

section 3.1. This representation is based the real world timing system.

3.2.2 Multi-level Clustered Index

We believe that representation of time in temporal relational database

plays an important role in optimizing the query. Therefore, we have used

in our approach the regular universal timing to stamp events. That is year,

month, day, hour, minute, second, … etc.

Depending on the chosen granularity, as explained in section 3.1, levels

will be assigned for the index. Assuming that start time “Beg Time” is

used as a primary index in quasi-append only temporal relational

database. ISAM (Indexed Sequential Access Method) can be adapted in

multi-level clustering index. Multi-level clustered index depends in the

universal timing to define levels. For example, for the sack of simplicity

and without loss of generality, assume that granularity is a day level. Then

a multi-level index can be designed as shown in Figure 3.2. Note that date

format start with year, then month and finally day. (i.e. “yyyy-mm-dd”).

In “End Time” field “UC” stands for until changed. Therefore; levels of

index are organized as follows: the first level (base level) represent days,

second level is dedicated for months, and the third level (top level) is

dedicated for years. For an hour granularity in a relation, the first level

will be hours, second level will be days, third level will be months, and

www.manaraa.com

68

the forth level (top level) will be years. The same dividing for levels can

be applied to finer granularity accordingly.

www.manaraa.com

69

Figure 3.2. Mutli-level index

Beg Time Emp ID End Time Dept

1999-02-11 ID100 2000-01-01 D3

1999-02-11 ID801 UC D1

1999-02-11 ID321 2001-06-01 D4

1999-02-12 ID741 UC D8

1999-02-12 ID524 2001-06-01 D4

1999-02-12 ID856 UC D2

1 : 1999-02-13 ID312 UC D5

2 : 1999-02-13 ID433 UC D4

3 :

4 : 1999-02-13 ID217 2000-01-01 D4

5 :

6 :

7 :

8 : 1999-02-14 ID154 UC D3

9 : 1999-02-14 ID719 2001-01-01 D2

10

1 11 1999-02-14 ID384 2000-01-01 D5

2 12

3 13

4 14

5 : 15

 6 : 16

7 : 17

8 : 18

9 : 19

10 : 20

11 : 21 :

12 : 22 : 1999-02-16 ID843 2001-09-01 D4

23 : 1999-02-16 ID756 UC D1

1998 24 :

1999 25 : 1999-02-16 ID354 UC D4

2000 1 : 26 :

2001 2 : 27 :

3 : 28 :

29 : 1999-02-17 ID698 UC D3

1999-02-17 ID654 UC D1

12 :

1999-02-17 ID357 2000-06-01 D9

1 :

2 :

3 :

1999-02-18 ID584 UC D7

1999-02-18 ID346 UC D2

31 :

1999-02-18 ID984 UC D2

1999-02-19 ID687 UC D6

1999-02-19 ID964 2002-01-01 D4

1999-02-19 ID823 UC D5

:
:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

(1st Level)

:

:

(Top Level)

(Data File)

(Base Level)

(2nd Level)

(3rd Level)

:

:

www.manaraa.com

70

In case that no events took place at certain time period. Then that period

or interval can points to Null as in date “1999-2-15” in Figure 3.2.

Popescul [2000] has suggested to use clustering in identifying temporal

trends in document database.

Indexes can be either dense or non-dense. In dense indexes, there exist at

least one pointer that point for every key entry in data file. In non-dense

indexes a range specified with two keys that have upper bound and lower

bound are specified to locate a surrogate key. Dense indexes are used for

small database. But to reduce the searching blocks in very large databases

we used non-dense indexes. Records that are used in this index are

assumed to be not spanned fixed length records.

Algorithm 3.1 explains the search procedure for a record in the data file

using non-dense index based on regular dates.

Algorithm 3.1. Searching in Multi-level Temporal Index

Step 1: D ← address of most outer index level (Highest Granularity)

Step 2: For i=N to 1 step –1

 Go to D block ;

 Search in block D for a position P of record R;

 D ← P

 Next

Step 3: Read data in block D;

Step 4: Search for record R;

www.manaraa.com

71

At algorithm 3.1 . R is the record/s we are searching for. N is the number

of levels for the multi level index.

In first step we search in the highest level index to locate the address D at

which record/s R outer index is located. At step 2 multi-levels indexes are

traversed all the way to the first base level in order to locate the block at

which record/s R may be located. Steps 3 and 4 are used to locate the

needed record/s within the designated block.

This Multi-level clustered index facilitates the joining algorithms

efficiently. The index is maintained by default for the desired granularity

plus all higher levels granularity.

In distributed systems the main factor for evaluating a query or algorithm

is the communication cost. In large database (Temporal Databases) the

number of block transfers from the disk is used to measure the actual cost

[Ozsu, 1999] and [Silberschatz, 1997]. Therefore, in our design in this

algorithm we have concentrated in minimizing numbers of disk access as

much as possible.

One disadvantage in this scheme is that there are many index levels

access for every date as in Figure 3.2. We need three accesses to get to the

data file. If we use hour granularity then 4 disk accesses per each hour

will be required. And so forth for finer granularity. To overcome this

www.manaraa.com

72

problem, we have suggested an improvement to this approach. We can

combine two levels together in one level as in Figure 3.3. We combined

years and months together in one level. Therefore, reducing the disk

access one access for every search. But as event increases, more blocks

for these combined levels will be used. Consequently; either binary search

will be implemented to search through these blocks which is worse than

the first approach in Figure 3.2, or we could go back to the previous

approach and add one extra level as in Figure 3.2.

3.2.3 Hashed-Cluster Temporal Index

In order to minimize levels of access, a better solution is needed than the

solution that is illustrated in Figure 3.3. As we know, universal timing are

divided into 12 months a year, 28-31 days a month, 24 hours a day, ... etc.

This timing scheme is adequate to represent all time stamps, valid time

stamp, transaction time stamps, and bi-temporal time stamps.

Universal Timing (UT) posses a predictable rhythm. Hence; this property

can be used to find the location of the indexed record more efficiently.

This indexing scheme will be named after the used concepts within the

index structure. It will be named Hashed-cluster temporal index. In this

index a hash function can be used to map the used granularities through

an intermediate one level of index file as shown in Figure 3.4.

www.manaraa.com

73

Figure 3.3. Modified multi-level index

Beg Time Emp ID End Time Dept

1999-02-11 ID100 2000-01-01 D3

1999-02-11 ID801 UC D1

1999-02-11 ID321 2001-06-01 D4

1999-02-12 ID741 UC D8

1999-02-12 ID524 2001-06-01 D4

1999-02-12 ID856 UC D2

1 : 1999-02-13 ID312 UC D5

2 : 1999-02-13 ID433 UC D4

3 :

4 : 1999-02-13 ID217 2000-01-01 D4

5 :

6 :

7 :

8 : 1999-02-14 ID154 UC D3

9 : 1999-02-14 ID719 2001-01-01 D2

10

1999-1 11 1999-02-14 ID384 2000-01-01 D5

1999-2 12

1999-3 13

1999-4 14

1999-5 : 15

1999-6 : 16

1999-7 : 17

1999-8 : 18

1999-9 : 19

1999-10 : 20

1999-11 : 21 :

1999-12 : 22 : 1999-02-16 ID843 2001-09-01 D4

23 : 1999-02-16 ID756 UC D1

24 :

25 : 1999-02-16 ID354 UC D4

2000-1 : 26 :

2000-2 : 27 :

2000-3 : 28 :

29 : 1999-02-17 ID698 UC D3

1999-02-17 ID654 UC D1

2000-12 :

1999-02-17 ID357 2000-06-01 D9

1 :

2 :

3 :

1999-02-18 ID584 UC D7

1999-02-18 ID346 UC D2

31 :

1999-02-18 ID984 UC D2

1999-02-19 ID687 UC D6

1999-02-19 ID964 2002-01-01 D4

1999-02-19 ID823 UC D5

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

(2nd Level)
(Top Level)

(Data File)

(1st Level)
(Base Level)

:
:

:

:

:

www.manaraa.com

74

Figure 3.4. Hash-cluster index

Beg Time Emp ID End Time Dept

1999-02-11 ID100 2000-01-01 D3

1999-02-11 ID801 UC D1

1999-02-11 ID321 2001-06-01 D4

1999-02-12 ID741 UC D8
Index Block 1999-02-12 ID524 2001-06-01 D4
Field Pointer
Value 1999-02-12 ID856 UC D2

1999-02-01 : 1999-02-13 ID312 UC D5

1999-02-02 : 1999-02-13 ID433 UC D4

1999-02-03 :

1999-02-04 : 1999-02-13 ID217 2000-01-01 D4

1999-02-05 :

1999-02-06 :

1999-02-07 :

1999-02-08 : 1999-02-14 ID154 UC D3

1999-02-09 : 1999-02-14 ID719 2001-01-01 D2

1999-02-10

1999-02-11 1999-02-14 ID384 2000-01-01 D5

1999-02-12

1999-02-13

(Hash Fuction) 1999-02-14

1999-02-15

1999-02-16

h(time)= 1999-02-17

1999-02-18

1999-02-19

1999-02-20

1999-02-21 :

1999-02-22 : 1999-02-16 ID843 2001-09-01 D4

1999-02-23 : 1999-02-16 ID756 UC D1

1999-02-24 :

1999-02-25 : 1999-02-16 ID354 UC D4

1999-02-26 :

1999-02-27 :

1999-02-28 :

1999-02-29 : 1999-02-17 ID698 UC D3

1999-02-17 ID654 UC D1

1999-02-17 ID357 2000-06-01 D9

1999-03-01 :

1999-03-02 :

1999-03-03 :

1999-02-18 ID584 UC D7

1999-02-18 ID346 UC D2

1999-03-31 :

1999-02-18 ID984 UC D2

1999-02-19 ID687 UC D6

1999-02-19 ID964 2002-01-01 D4

1999-02-19 ID823 UC D5

:

:

:

:
:

:

:

:

:

:

:

:

:

(Data File)

(Index File)

:

:

:

:

:

www.manaraa.com

75

Since the main index key is “starting time”, then the first “starting time”

stamp of each relation in a temporal relational database will be recorded

in the data dictionary of the database. Used granularity will be defined

too. Plus other regular meta data about the database as shown in

Table 3.10 . All of these meta data will be included in the database

dictionary.

Table 3.10. Temporal database dictionary (Meta data)

Relation
Name

Granularity Starting Time No of
Records

Etc

Department Day 1999-01-01 2471 ...

Operations Hour 1999-03-26-17 54826 ...

.

.

As can be seen from Figure 3.4, the hash function takes time stamp

identification as a parameter and returns its exact block address through a

fixed intermediate index file. As an example. Suppose that we need to

search for records that start time stamp is 1999-4-23 in Department

relation. We can find its location by using a function that returns the

coordinate of the time stamp “1999-4-23”. From the data dictionary in

Table 310 we can determine the starting point from which to start

counting for the position of this date in the index file.

www.manaraa.com

76

Hence,

 Day_Coordinat_Function(“1999-04-23”) = 31+28+31+23=113

Therefore,

Exact index position address = Start memory address of index file + 113

Functions that are used to extract the coordinate will depend on the

granularity definition for the desired relation as specified in the database

dictionary. We can use the coordinate of “Start Time” stamp and the

“Starting Time” for the specified relation in order to find its exact pointer

location that will lead us to the exact block address as shown above.

The approach used in Figure 3.2 will require 3 access for every searched

record if the used granularity is “Day”. It will require 4 extra disk access

if the used granularity is “Hour” and so forth. With the Hashed-cluster

approach of Figure 3.4, the number of disk access will always be only one

access to the disk regardless of defined granularity, even if we used

microsecond granularity.

Algorithm 3.2 illustrate the search algorithm for a record in the data file

using the hash function that is used in the context of hashed-cluster index.

www.manaraa.com

77

Algorithm 3.2. Searching in Hashed-cluster temporal index

 Hash_Function (“Start Time Stamp”) Pointer

 Begin

Step 1: Base_Position ← Relation “Starting Time”

Step 2: Record_Coordinate ←X_Coordinate_Funtion(Start -

 Time Stamp)

Step 3: Actual_Position ← Base_Postion + Record_Coordinate

Step 4: Block_Pointer(Actual_Position) ← Record_Pointer

Step 5: Hash_Function ← Record_Pointer

 End

“Base_Position” represent the starting memory address from which to

start counting. “Base_Position” can be found in the database dictionary,

or it can be determined upon downloading the index file from the hard

disk to the RAM. “X_Coordinat_Function” as we said before will be used

according to the granularity defined in the data dictionary. The “X” in the

function represents the granularity. If the granularity is “Day”, then we

use “Day_Coordinate_Function”. If the used granularity is “Hour” then

we used “Hour_Coordinate_Function” and so on for finer granularity.

Through the intermediate index file, the exact block position (Actual

position) can be found by adding the base memory address to the record

coordinate.

www.manaraa.com

78

Since the cost of the processing time is negligible. And the disk access

time is the dominant cost factor in large database [Ozsu, 1999] and

[Silberschatz, 1997]. This indexing scheme (Hashed-cluster index) takes

the burden of disk access and passes it to processing time. Hence,

tremendous time is saved in searching.

The Hashed-cluster index methodology can be used for continuous events

database where there are always events takes place all the time, so no null

pointers is used.

In case of having discrete events, we could improve this index

methodology to have non-dense index file.

Quasi-append only databases are recommended to use this index for.

This approach takes “Start Time” stamp as primary cluster index. More

index keys can be added to primary “Star Time” to form second, third,

and forth multiple-keys primary index. These keys could be “End Time”

stamp, surrogate attribute, and temporal attribute fields. Which will help

in implementing various types the joining algorithms according to our

needs. To add this multiple-key clustered index capabilities to the

database we have to consider each type of the temporal database

separately. The two main types of temporal databases that will be

discussed here are roll back databases which depend on transaction time

www.manaraa.com

79

stamping, and historical databases, which depends on valid time

stamping. Bi-temporal databases are defined within the context of roll-

back and historical databases, because it’s a combination of both. In the

next three sub-sections we will discuss how multiple-keys primary

clustered index can be implemented for historical and rollback temporal

databases, in addition to ending time for rollback transaction times and

historical valid time.

3.2.3.1 Transaction start time in rollback databases

Rollback database uses transaction start time and transaction end time.

Since the nature of transaction times update happens naturally in

ascending order, then primary hashed-clustered index as explained above

can be used to index these types of databases.

3.2.3.2 Valid start time in historical databases

Historical relational databases uses valid start time and valid end time.

The file structure of the historical databases would be hard to be kept in

contiguous memory location. Therefore, a secondary clustered index will

be used instead of primary clustered index but with the same hash

function and same intermediate index file. Unused intermediate pointers

can have reserved blank pointers that can be used upon request. Each

www.manaraa.com

80

group of records that carry same valid start time have to be kept together

in contiguous memory location in one cluster but clusters does not have to

be ordered according to its valid start time in contiguous locations. And

this is what we mean by secondary clustered index. Nature of valid time

entry is unpredictable which necessitate the use of this method. This

method requires regular disk de-fragmentation and reorganization of

records.

3.2.3.3 Valid and transaction end times in rollback and historical

databases.

Valid end time in historical databases, and transaction end time in

rollback databases can be added normally during updates as follows:

Transaction end time will be added automatically by the system and a

new tuple for the same key is created. And that happens when the related

tuple is updated.

Valid end time can be either one of the following two cases. First case

where valid end time is left blank because it is unknown. (e.g. an

employee termination date). This type has to be updated manually upon

user entry. Second case where valid end time is known ahead of time. In

this case it is entered upon the tuple creation. Old records will be closed

by filling it’s valid end time. And at the same time a new tuple will be

www.manaraa.com

81

created. The new tuple valid start time is greater in one unit time than

valid end time for the old closed tuple. Bear in mind, that upon updating

tuples by entering its end time, the records have to be reorganized and

sorted by end time or any other desired key according to our needs, as a

second or more sorting key/s. Of course start time will be the first sorting

key. And this would be possible if we use fixed length records. This

would be a simple cheap operation since no more extra space would be

required. This organization comes in handy when sorting is required to fit

specific join algorithm in query optimization operation. In this case

sorting will be implemented in place.

Based in this discussion we can see that transaction time is suitable for

continuous events. And valid time is suitable for discrete events.

Transaction time is suitable for events that are recorded as it happen and

continue to exist until further notice. But valid time is suitable to record

events that might be recorded in retroactive and proactive basis.

3.2.4 Temporal Relational Databases Operation

As in the regular relational databases. The temporal relational databases

operations are insert, delete, and update. Table 3.11 summarize

suggestion to the use of these operations in temporal databases index.

www.manaraa.com

82

Table 3.11. Possible operation on temporal database index

Operation Historical DB

(Valid Time)

 Roll Back DB

(Transaction Time)

Append To related cluster or

overflow

To end of relation

Delete Marked out as deleted

Marked out as deleted

Correction

 if start time,

delete and append

(Normally).

 If end time, &

others reorganize

related cluster.

 If start time,

delete and append.

(Overflow)

 If end time, &

others reorganize

related cluster.

U
p
d
at

e

Entering

End time

Reorganize related

cluster

Reorganize related

cluster

These restrictions have to be built in within the Temporal Relational

Database Management System. Because temporal relations inside

a relational database have to be maintain and sorted as explained earlier in

section 3.1 in order to use its temporal dimension efficiently according to

Hashed-cluster index. And follows we recap the methodology to do so in

transaction roll back database.

One batch of clustered records that contain the most current records,

which belong to a specified start time stamp, are being dealt with in a

temporary file (Temporal Buffer Table TBT). This batch of clustered

records will be added to the main related relations within the database

upon the beginning of the next indexed time stamp that are defined

according to used granularity. We add these clustered records into its

www.manaraa.com

83

contiguous memory location at the end of the related relation. But before

we add these clustered records and start the next temporary time stamp

file. We may sort the records according to “End Time” stamp or any other

one or more key/s. In this way we have “Start Time” and “End Time” as a

multiple primary index which will helps to facilitate different join

algorithms.

This hashed-cluster index lends itself to facilitate joining between

incompatible time granularity for either index methodology as in

Figure 3.2, or as in Figure 3.4. In one condition, that is, granularity have

to be generalized but not specialized as depicted in Figure 3.5.

Figure 3.5. Generalization and specialization in time granularities

More details about dealing with incompatible granularities can be found

in [Dyreson, 1994].

Year Month Day Hour

Generalization

Specialization

www.manaraa.com

84

3.3 JOIN PROCESSING

3.3.1 Overview

In previous sections we have discussed important factors in query

optimization. That is, temporal relational databases schema and indexing.

The third most important factor is join processing, which will be

discussed in this section. In order to represent temporal data in this

section we have used the time interval representation [Toman, 1996] and

[Toshiyuki, 1999] as will be shown in the next sections.

To represent our findings, we have used the following schema, which

contain employee relation as in Table 3.12. This relation is in the snapshot

relation of the Employee relation.

Table 3.12. Employee snap-shot relation

Emp_ID Name DOB Start Salary Sal_Ts Dept Dept_Ts

01 Ahmad 01/01/1960 1 100 51 3 46

02 Ali 02/02/1961 21 110 71 2 79

03 Raed 03/03/1960 51 85 116 5 141

04 Mona 04/04/1970 91 120 146 1 148

05 Mai 05/05/1980 151 95 191 3 181

06 Khalid 06/06/1980 161 80 191 5 198

07 Sami 07/07/1985 111 100 196 2 191

08 Osamah 08/08/1961 90 120 197 2 191

09 Jamal 09/09/1962 146 135 191 3 194

As can be seen form the “Employee” snapshot relation in Table 3.12

above. There are three non-temporal attributes, which will stay in this

www.manaraa.com

85

relation, they are Name, DOB, and Start attributes. In addition, there are

two temporal attributes, they are Salary and Dept (Department). The last

snapshot value of these temporal attributes are kept within “Employee”

snapshot relation with a hidden field next to each one (Shaded in Gray)

that point to the last value in the temporal relations that are related to

“Employee” relation. Temporal relations that have emerged from

“Employee” relations are shown in Tables 3.13.

Table 3.13a. Temporal employee - department relation

Emp_ID Ts Te Dept

01 1 15 1

01 16 30 3

01 31 45 1

01 46 60 3

02 21 60 2

02 61 65 3

02 66 69 1

. . . .

. . . .

Table 3.13b. Temporal employee - salary relation

Emp_ID Ts Te Salary

01 1 10 50

01 11 15 55

01 16 20 60

01 21 30 70

01 31 40 75

01 41 45 80

01 46 50 85

. . . .

. . . .

The two temporal relations in Tables 3.13 will be used through out this

section to demonstrate the joining algorithms.

Following are terms that have been used and their representation:

www.manaraa.com

86

 Term Representation

 Surrogate : “S”, Key attributes (Emp_ID)

 Temporal attribute : “A”,Temporal attributes (Salary and Department)

 Time attributes : Start time stamp “Ts” and end time stamp “Te”

The used temporal relations are in first temporal normal form TNF as

specified by Tansel [1993] which states that a relation is in Temporal

Normal Form (TNF) if and only if it is in BCNF (Boyce-Codd Normal

Form) and there exist no temporal dependencies among its none-key

attributes.

Life span of a relation is identified to start with its earliest start time tuple,

Start-Life-Span(R)=MINr{r (Ts)}. And it ends with the latest end time

End-Life-Span(R)=MAXr{r (Te)}.

There are many types of temporal joins [Gunadhi, 1990]. In this section,

we show a special interest in the most famous kind of temporal join and

that is Time-intersection Equi-join. In this type of join, two tuples from

two different temporal relations can be joined together if their surrogate

attribute are equal and their time interval intersects. This type of temporal

join will be used in this section in the following sections. The following

conventions are used through out this section. Let R1 and R2 be the

joining relations. r1 and r2 represent tuples from R1 and R2, respectively.

bfr is the blocking factor.

www.manaraa.com

87

With regards to time stamps in temporal relational databases, there are

tow types of temporal relations. First type posses a continuity nature. In

this type if a tuple is closed by filling in the “Te1”, a new tuple have to be

created at the same time. And it will carry the new temporal attribute

value that causes the change. Its “Ts2” will be equal to old “Te1” for the

old tuple plus one unit of used time granularity. That is:

 Ts2 = Te1 + 1

As an example, in “Salary” temporal relation, the salary of an employee

will remain valid until s/he gets a raise, which will start right after the

ending time of the old salary interval. There can not be an interval without

a salary.

The second type posses a discrete nature. Closing a tuple does not have to

initiate a new tuple. As an example, suppose we have a training temporal

relation for the “Employee” relation. An employee might be assigned for

a training course for a specific period of time. When the training interval

ends. S/he does not have to have a second training course right after it. In

this type of temporal relation, events are discrete. While for the first type,

events are continuous. When designing algorithms for joining temporal

relations, one have to take in consideration this fact in order to optimize

the join to maximum possible limit.

www.manaraa.com

88

In this section the first 3 algorithms in the next sections, that is algorithm

3.3, 3.4, and 3.5, are assumed to have continuous time temporal relation

for both joined relations.

Algorithms 3.4, 3.5, and 3.6 below, are supported by the quasi-append

databases that we have suggested to use in Section 3.2.

Merge-join and nested loop join will be used for simplicity of the

algorithms. As hash join is expected to imply a complex algorithm, it will

not be used.

The important question that may arise, do we really need algorithm that

may not be optimal?

 As we know that an algorithm might not be optimal at one stage.

Nevertheless; the overall plan may constitute the optimal path. More

clearly, the nonoptimal algorithm may lead to optimal subsequent joins

that make up for the overhead caused by an earlier bottleneck process. As

Silberschatz [1997] stated “To choose the best overall algorithm, we

must consider even nonoptimal algorithms for individual operations”.

3.3.2 Join Using S, and Ts

To understand how we can design an optimal algorithm we have used two

relations from the above database. These two relations are “Department”

(Table 3.14) and “Salary” (Table 3.15)

www.manaraa.com

89

Table 3.14. Department relation

Emp_ID Ts Te Dept

01 1 15 1

01 16 30 3

01 31 45 1

01 46 60 3

02 21 60 2

02 61 65 3

02 66 69 1

02 70 74 2

02 75 78 5

02 79 80 2

03 51 60 5

03 61 90 4

03 91 140 1

03 141 150 5

04 91 95 1

04 96 100 2

04 101 104 5

04 105 110 3

04 111 120 1

04 121 126 2

04 127 130 4

04 131 134 1

04 135 138 4

04 139 142 5

04 143 147 3

04 148 150 1

05 151 160 4

05 161 180 5

05 181 200 3

06 161 163 1

06 164 169 2

06 170 174 4

06 175 179 3

06 180 181 1

06 182 184 5

06 185 189 3

06 190 194 1

06 195 197 2

06 198 200 5

07 111 115 2

07 116 120 1

07 121 125 5

07 126 130 1

07 131 135 5

07 136 140 3

07 141 150 4

07 151 160 1

07 161 170 4

07 171 180 2

07 181 190 4

07 191 200 2

08 90 110 2

08 111 130 1

08 131 170 3

08 171 190 1

08 191 200 2

09 146 150 5

09 151 155 1

09 156 159 4

09 160 168 5

09 169 170 3

09 171 181 1

09 182 193 2

09 194 200 3

Table 3.15. Salary relation

Emp_ID Ts Te Salary

01 1 10 50

01 11 15 55

01 16 20 60

01 21 30 70

01 31 40 75

01 41 45 80

01 46 50 85

01 51 60 100

02 21 30 60

02 31 40 65

02 41 50 70

02 51 55 75

02 56 60 85

02 61 65 90

02 66 70 100

02 71 80 110

03 51 60 45

03 61 65 49

03 66 70 53

03 71 80 58

03 81 85 62

03 86 90 65

03 91 95 68

03 96 105 70

03 106 110 75

03 111 115 80

03 116 150 85

04 91 95 50

04 96 100 55

04 101 105 60

04 106 110 65

04 111 115 70

04 116 120 75

04 121 125 80

04 126 130 85

04 131 135 90

04 136 140 100

04 141 145 110

04 146 150 120

05 151 160 60

05 161 170 70

05 171 180 80

05 181 190 90

05 191 200 95

06 161 170 60

06 171 180 70

06 181 190 75

06 191 200 80

07 111 120 50

07 121 130 55

07 131 135 60

07 136 140 65

07 141 150 70

07 151 160 75

07 161 175 80

07 176 185 85

07 186 195 95

07 196 200 100

08 90 100 40

08 101 110 45

08 111 115 50

08 116 125 56

08 126 130 70

08 131 140 73

08 141 150 75

08 151 165 78

08 166 170 80

08 171 173 85

08 174 175 88

08 176 177 90

08 178 181 93

08 182 184 95

08 185 186 97

08 187 189 99

08 190 192 100

08 193 193 110

08 194 196 115

08 197 200 120

09 146 150 70

09 151 154 85

09 155 160 100

09 161 170 110

09 171 180 125

09 181 190 130

09 191 200 135

www.manaraa.com

90

Both relations are sorted by surrogate attribute “Emp_ID” and start time

stamp “Ts”. Figure 3.6 illustrate a chart for “Department” relation. And

Figure 3.7 illustrate a chart for “Salary” relation.

www.manaraa.com

91

Figure 3.6. Department relation chart, sorted by S, & Ts

0

25

50

75

100

125

150

175

200

1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 9 9 9

Employee

T
im

e

0

1

2

3

4

5

6

7

8

D
ep

ar
tm

en
t

Ts Te Dpt

www.manaraa.com

92

Figure 3.7 Salary relation chart, sorted by S & Ts

0

25

50

75

100

125

150

175

200

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 9 9 9 9 9 9 9

Employee

T
im

e

0

25

50

75

100

125

150

175

200

S
al

ar
y

Ts Te Sal

www.manaraa.com

93

As we can see from the department and salary relation charts. The

employee time start for the first event for each employee matches. Also,

the ending time for the last event matches too for the each employee.

Within the complete time frame for each employee the time slices

segments either starts, end, or overlap with each other’s. The overlaps

could be in either direction but certainly, time events for each employee

ends at the same time. Based on these properties we have designed

algorithm 3.3 to join both relations.

Algorithm 3.3 below illustrates the process of joining temporal relation

that are of continuous nature. And based on temporal relations that are

sorted by surrogate and starting time stamp.

Algorithm 3.3. TE-join for relations that are sorted by S, and Ts.

Where the link is based on time intersection plus surrogate attribute.

 Step 1 : Read r1 from R1 and r2 from R2

 Step 2 : Repeat until R1.eof and R2.eof

 Three cases to consider:

 1- Te1 < Te2 Produce output tuple,

 Identify uncovered portion of r2 as r2,

 Read next r1.

 2- Te1 = Te2 Produce output tuple,

 Read next r1 and r2.

 3- Te1 > Te2 Produce output tuple,

 Identify uncovered portion of r1 as r1,

 Read next r2.

www.manaraa.com

94

Cost:

Since for each tuple in one side of the join relation there is a matching

tuple in the other side of the join relations, this type of join perform the

most optimize join between relation in join processing of temporal

relational databases.

Sort merge can be used for this kind of join. Both relations will be

scanned only once. Therefore, the cost of this join will be minimal.

C
5.1

= br1 + br2

Where b is the number of blocks. The algorithm has been implemented in

the computer. The source code for the implementation can be seen in

Annex 1. Microsoft Access has been used to write the codes. The output

of the implementation is illustrated in Table 3.16.

Table 3.16. Output of algorithm 3.3.

www.manaraa.com

95

Emp_ID Ts Te Dept Salary

01 1 10 1 50

01 11 15 1 55

01 16 20 3 60

01 21 30 3 70

01 31 40 1 75

01 41 45 1 80

01 46 50 3 85

01 51 60 3 100

02 21 30 2 60

02 31 40 2 65

02 41 50 2 70

02 51 55 2 75

02 56 60 2 85

02 61 65 3 90

02 66 69 1 100

02 70 70 2 100

02 71 74 2 110

02 75 78 5 110

02 79 80 2 110

03 51 60 5 45

03 61 65 4 49

03 66 70 4 53

03 71 80 4 58

03 81 85 4 62

03 86 90 4 65

03 91 95 1 68

03 96 105 1 70

03 106 110 1 75

03 111 115 1 80

03 116 140 1 85

03 141 150 5 85

04 91 95 1 50

04 96 100 2 55

04 101 104 5 60

04 105 105 3 60

04 106 110 3 65

04 111 115 1 70

04 116 120 1 75

04 121 125 2 80

04 126 126 2 85

04 127 130 4 85

04 131 134 1 90

04 135 135 4 90

04 136 138 4 100

04 136 140 5 100

04 141 142 5 110

04 143 145 3 110

04 146 147 3 120

04 148 150 1 120

05 151 160 4 60

05 161 170 5 70

05 171 180 5 80

05 181 190 3 90

05 191 200 3 95

06 161 163 1 60

06 164 169 2 60

06 170 170 4 60

06 171 174 4 70

06 175 179 3 70

06 180 180 1 70

06 181 181 1 75

06 182 184 5 75

06 185 189 3 75

06 190 190 1 75

06 191 194 1 80

06 195 197 2 80

06 198 200 5 80

07 111 115 2 50

07 116 120 1 50

07 121 125 5 55

07 126 130 1 55

07 131 135 5 60

07 136 140 3 65

07 141 150 4 70

07 151 160 1 75

07 161 170 4 80

07 171 175 2 80

07 176 180 2 85

07 181 185 4 85

07 186 190 4 95

07 191 195 2 95

07 196 200 2 100

08 90 100 2 40

08 101 110 2 45

08 111 115 1 50

08 116 125 1 56

08 126 130 1 70

08 131 140 3 73

08 141 150 3 75

08 151 165 3 78

08 166 170 3 80

08 171 173 1 85

08 174 175 1 88

08 176 177 1 90

08 178 181 1 93

08 182 184 1 95

08 185 186 1 97

08 187 189 1 99

08 190 190 1 100

08 191 192 2 100

08 193 193 2 110

08 194 196 2 115

08 197 200 2 120

09 146 150 5 70

09 151 154 1 85

09 155 155 1 100

09 156 159 4 100

09 160 160 5 100

09 161 168 5 110

09 169 170 3 110

09 171 180 1 125

09 181 181 1 130

09 182 190 2 130

09 191 193 2 135

09 194 200 3 135

www.manaraa.com

96

3.3.3 Join Using Ts, and S

There are special cases were relations could be sorted by start time stamp

“Ts” and surrogate attribute “S”. These relations possess different

characteristics than those explained in section 3.3.2. To illustrate these

characteristics we have used the same relation as in section 3.3.2. But we

have sorted them on Ts and S attributes. Table 3.17 illustrate

“Department” relation sorted on Ts & S attributes. Table 3.18 illustrate

the “Salary” relation sorted by Ts & S.

Table 3.17. Department relation sorted by Ts & S

Ts Emp_ID Te Dept

1 01 15 1

16 01 30 3

21 02 60 2

31 01 45 1

46 01 60 3

51 03 60 5

61 02 65 3

61 03 90 4

66 02 69 1

70 02 74 2

75 02 78 5

79 02 80 2

90 08 110 2

91 03 140 1

91 04 95 1

96 04 100 2

101 04 104 5

105 04 110 3

111 04 120 1

111 07 115 2

111 08 130 1

116 07 120 1

121 04 126 2

121 07 125 5

126 07 130 1

127 04 130 4

131 04 134 1

131 07 135 5

131 08 170 3

135 04 138 4

136 07 140 3

139 04 142 5

141 03 150 5

141 07 150 4

143 04 147 3

146 09 150 5

148 04 150 1

151 05 160 4

151 07 160 1

151 09 155 1

156 09 159 4

160 09 168 5

161 05 180 5

161 06 163 1

161 07 170 4

164 06 169 2

169 09 170 3

170 06 174 4

171 07 180 2

171 08 190 1

171 09 181 1

175 06 179 3

180 06 181 1

181 05 200 3

181 07 190 4

182 06 184 5

182 09 193 2

185 06 189 3

190 06 194 1

191 07 200 2

191 08 200 2

194 09 200 3

195 06 197 2

198 06 200 5

Table 3.18. Salary relation sorted by Ts & S

www.manaraa.com

97

Ts Emp_ID Te Salary

1 01 10 50

11 01 15 55

16 01 20 60

21 01 30 70

21 02 30 60

31 01 40 75

31 02 40 65

41 01 45 80

41 02 50 70

46 01 50 85

51 01 60 100

51 02 55 75

51 03 60 45

56 02 60 85

61 02 65 90

61 03 65 49

66 02 70 100

66 03 70 53

71 02 80 110

71 03 80 58

81 03 85 62

86 03 90 65

90 08 100 40

91 03 95 68

91 04 95 50

96 03 105 70

96 04 100 55

101 04 105 60

101 08 110 45

106 03 110 75

106 04 110 65

111 03 115 80

111 04 115 70

111 07 120 50

111 08 115 50

116 03 150 85

116 04 120 75

116 08 125 56

121 04 125 80

121 07 130 55

126 04 130 85

126 08 130 70

131 04 135 90

131 07 135 60

131 08 140 73

136 04 140 100

136 07 140 65

141 04 145 110

141 07 150 70

141 08 150 75

146 04 150 120

146 09 150 70

151 05 160 60

151 07 160 75

151 08 165 78

151 09 154 85

155 09 160 100

161 05 170 70

161 06 170 60

161 07 175 80

161 09 170 110

166 08 170 80

171 05 180 80

171 06 180 70

171 08 173 85

171 09 180 125

174 08 175 88

176 07 185 85

176 08 177 90

178 08 181 93

181 05 190 90

181 06 190 75

181 09 190 130

182 08 184 95

185 08 186 97

186 07 195 95

187 08 189 99

190 08 192 100

191 05 200 95

191 06 200 80

191 09 200 135

193 08 193 110

194 08 196 115

196 07 200 100

197 08 200 120

Both relations above have been charted. Figure 3.8 illustrate a chart for

“Department” relation and Figure 3.9 illustrate a chart for “Salary”

relation.

www.manaraa.com

98

Figure 3.8. Department relation chart, sorted by Ts & S

0

25

50

75

100

125

150

175

200

1 1 2 1 1 3 2 3 2 2 2 2 8 3 4 4 4 4 4 7 8 7 4 7 7 4 4 7 8 4 7 4 3 7 4 9 4 5 7 9 9 9 5 6 7 6 9 6 7 8 9 6 6 5 7 6 9 6 6 7 8 9 6 6

Employee

T
im

e

0

1

2

3

4

5

6

7

8

D
ep

ar
tm

en
t

Ts Te Dpt

www.manaraa.com

99

Figure 3.9. Salary relation chart, sorted by Ts & S

0

25

50

75

100

125

150

175

200

1 1 1 1 2 1 2 1 2 1 1 2 3 2 2 3 2 3 2 3 3 3 8 3 4 3 4 4 8 3 4 3 4 7 8 3 4 8 4 7 4 8 4 7 8 4 7 4 7 8 4 9 5 7 8 9 9 5 6 7 9 8 5 6 8 9 8 7 8 8 5 6 9 8 8 7 8 8 5 6 9 8 8 7 8

Employee

T
im

e

0

25

50

75

100

125

150

175

200

S
al

ar
y

Ts Te Sal

www.manaraa.com

100

Since both relations are sorted on Ts & S, then single loop join

methodology will be used. Any relation could be used as outer relation.

As can be noted from the chart that for each time slices in “Department”

relation there are two chances. First chance is to find a corresponding

tuple in “Salary” relation. Second chance is not to find the exact matching

tuple. Fortunately, In this case the desired tuple will be found close to

where the searching pointer stops using the same available index due to

unsuccessful hit.

To explain this point more clearly let us takes an example from the chart.

Assume that the current tuple at “Department” relation is where Ts=70,

Te=74, Emp_ID=02, and Dept=2. As we know, we assume that the both

relation are indexed in a primary key that contain Ts & S . Therefore, The

search in “Salary” relation will be for a tuple that has “70 02” value as

primary key and the searching pointer will stop in “71 02” tuple and will

return a message to the user indicating that the record is not found. Since

the “Salary” tuple at which the searching pointer stops, start with 71 as

it’s “Ts” value, records in ascending order including this record will not

be our goal. Because at least the “70” value or more will not be covered.

And the coverage of this value is therefore guaranteed to be found in the

nearby preceding tuples, because both relations are of continuous nature.

www.manaraa.com

101

Based on these facts. This algorithm, in its worst cases, will search for a

small portion of the relation for the desired tuple (assuming) normal

distribution. Algorithm 3.4 has been designed to benefit from these

characteristics.

Algorithm 3.4. TE-join for relations that are sorted by Ts, and S.

Where the link is based on time intersection plus surrogate attribute.

 Step 1 : Select next r1 from R1 until eof

 Step 2 : Seek for r1 in R2, if not found then step 4

 Step 3 : Two cases to consider:

 1- Te1 <= Te2, Produce output tuple,

 Go to step 1

 2- Te1 > Te2, Produce output tuple.

 Identify uncovered portion as r1,

 Go to step 2

 Step 4 : seek for r1 in R2 such that Ts2 < Ts1 <= Te2, go to step 3

This algorithm has been implemented in the computer. Annex 1 contains

the source code for the implementation.

As for algorithm 3.3, Microsoft Access has been used to write the source

code. The output of the implementation is illustrated in Table 3.19.

www.manaraa.com

102

Cost:

In step 2, if the tuple were found then it would cost us one disk access. If

the desired tuple is not found then step 4 will be implemented, and we

calculate the cost as follows. Assume that the searching pointer (as

explained earlier) stops at tuple r21 and the correct matching tuple is r22.

The distance between r21 and r22 is D. The algorithm have to scan D in

order to reach r22 and Dr tuples will be scanned. Number of blocks for

these tuples will be added as disk access in order to calculate the cost. So,

the cost will be:

C
5.2

= br1 + (| r1 | * (Dr2 / bfr))

Outer relation should be the relation with less number of records in order

to increase the number of successful seek (hits) and at the same time

reduce the number of unsuccessful seek (hits). And therefore to achieve

better performance.

www.manaraa.com

103

Table 3.19. Output of algorithm 3.4.

Ts Emp_ID Te Dept Salary

1 01 10 1 50

11 01 15 1 55

16 01 20 3 60

21 01 30 3 70

21 02 30 2 60

31 01 40 1 75

31 02 40 2 65

41 01 45 1 80

41 02 50 2 70

46 01 50 3 85

51 01 60 3 100

51 02 55 2 75

51 03 60 5 45

56 02 60 2 85

61 02 65 3 90

61 03 65 4 49

66 02 69 1 100

66 03 70 4 53

70 02 70 2 100

71 02 74 2 110

71 03 80 4 58

75 02 78 5 110

79 02 80 2 110

81 03 85 4 62

86 03 90 4 65

90 08 100 2 40

91 03 95 1 68

91 04 95 1 50

96 03 105 1 70

96 04 100 2 55

101 04 104 5 60

101 08 110 2 45

105 04 105 3 60

106 03 110 1 75

106 04 110 3 65

111 03 115 1 80

111 04 115 1 70

111 07 115 2 50

111 08 115 1 50

116 03 140 1 85

116 04 120 1 75

116 07 120 1 50

116 08 125 1 56

121 04 125 2 80

121 07 125 5 55

126 04 126 2 85

126 07 130 1 55

126 08 130 1 70

127 04 130 4 85

131 04 134 1 90

131 07 135 5 60

131 08 140 3 73

135 04 135 4 90

136 04 138 4 100

136 04 140 5 100

136 07 140 3 65

141 03 150 5 85

141 04 142 5 110

141 07 150 4 70

141 08 150 3 75

143 04 145 3 110

146 04 147 3 120

146 09 150 5 70

148 04 150 1 120

151 05 160 4 60

151 07 160 1 75

151 08 165 3 78

151 09 154 1 85

155 09 155 1 100

156 09 159 4 100

160 09 160 5 100

161 05 170 5 70

161 06 163 1 60

161 07 170 4 80

161 09 168 5 110

164 06 169 2 60

166 08 170 3 80

169 09 170 3 110

170 06 170 4 60

171 05 180 5 80

171 06 174 4 70

171 07 175 2 80

171 08 173 1 85

171 09 180 1 125

174 08 175 1 88

175 06 179 3 70

176 07 180 2 85

176 08 177 1 90

178 08 181 1 93

180 06 180 1 70

181 05 190 3 90

181 06 181 1 75

181 07 185 4 85

181 09 181 1 130

182 06 184 5 75

182 08 184 1 95

182 09 190 2 130

185 06 189 3 75

185 08 186 1 97

186 07 190 4 95

187 08 189 1 99

190 06 190 1 75

190 08 190 1 100

191 05 200 3 95

191 06 194 1 80

191 07 195 2 95

191 08 192 2 100

191 09 193 2 135

193 08 193 2 110

194 08 196 2 115

194 09 200 3 135

195 06 197 2 80

196 07 200 2 100

197 08 200 2 120

198 06 200 5 80

www.manaraa.com

104

3.3.4 Join Using Ts, Te, and S

This kind of join is recommended for time dependent events in which an

event would create tuples in two or more relation. These tuples would

have the same Ts, Te, and S values. The difference in these tuples would

be the value of “A” attribute that would be related to the underlying

relation.

As an example to explain the behavior of this kind of joins that are based

in Ts, Te, and S as join attributes we would use the same Department, and

Salary example relations used in Table 3.14 and Table 3.15 respectively

from section 3.3.2. These relations are reproduced as in Table 3.20 and

Table 3.21 to be sorted by Ts, Te, and S.

Table 3.20. Department relation sorted by Ts, Te, & S

Ts Te Emp_ID Dept

1 15 01 1

16 30 01 3

21 60 02 2

31 45 01 1

46 60 01 3

51 60 03 5

61 65 02 3

61 90 03 4

66 69 02 1

70 74 02 2

75 78 02 5

79 80 02 2

90 110 08 2

91 95 04 1

91 140 03 1

96 100 04 2

101 104 04 5

105 110 04 3

111 115 07 2

111 120 04 1

111 130 08 1

116 120 07 1

121 125 07 5

121 126 04 2

126 130 07 1

127 130 04 4

131 134 04 1

131 135 07 5

131 170 08 3

135 138 04 4

136 140 07 3

139 142 04 5

141 150 03 5

141 150 07 4

143 147 04 3

146 150 09 5

148 150 04 1

151 155 09 1

151 160 05 4

151 160 07 1

156 159 09 4

160 168 09 5

161 163 06 1

161 170 07 4

161 180 05 5

164 169 06 2

169 170 09 3

170 174 06 4

171 180 07 2

171 181 09 1

171 190 08 1

175 179 06 3

180 181 06 1

181 190 07 4

181 200 05 3

182 184 06 5

182 193 09 2

185 189 06 3

190 194 06 1

191 200 07 2

191 200 08 2

194 200 09 3

195 197 06 2

198 200 06 5

www.manaraa.com

105

Table 3.21. Salary relation sorted by Ts, Te, & S

Ts Te Emp_ID Salary

1 10 01 50

11 15 01 55

16 20 01 60

21 30 01 70

21 30 02 60

31 40 01 75

31 40 02 65

41 45 01 80

41 50 02 70

46 50 01 85

51 55 02 75

51 60 01 100

51 60 03 45

56 60 02 85

61 65 02 90

61 65 03 49

66 70 02 100

66 70 03 53

71 80 02 110

71 80 03 58

81 85 03 62

86 90 03 65

90 100 08 40

91 95 03 68

91 95 04 50

96 100 04 55

96 105 03 70

101 105 04 60

101 110 08 45

106 110 03 75

106 110 04 65

111 115 03 80

111 115 04 70

111 115 08 50

111 120 07 50

116 120 04 75

116 125 08 56

116 150 03 85

121 125 04 80

121 130 07 55

126 130 04 85

126 130 08 70

131 135 04 90

131 135 07 60

131 140 08 73

136 140 04 100

136 140 07 65

141 145 04 110

141 150 07 70

141 150 08 75

146 150 04 120

146 150 09 70

151 154 09 85

151 160 05 60

151 160 07 75

151 165 08 78

155 160 09 100

161 170 05 70

161 170 06 60

161 170 09 110

161 175 07 80

166 170 08 80

171 173 08 85

171 180 05 80

171 180 06 70

171 180 09 125

174 175 08 88

176 177 08 90

176 185 07 85

178 181 08 93

181 190 05 90

181 190 06 75

181 190 09 130

182 184 08 95

185 186 08 97

186 195 07 95

187 189 08 99

190 192 08 100

191 200 05 95

191 200 06 80

191 200 09 135

193 193 08 110

194 196 08 115

196 200 07 100

197 200 08 120

Figure 3.10 is a chart of “Department” relation and Figure 3.11 is a chart

of “Salary” relation.

Following is the algorithm to implement the join for such temporal

relations.

www.manaraa.com

106

Figure 3.10. Dept relation chart, sorted by Ts, Te & S

0

25

50

75

100

125

150

175

200

1 1 2 1 1 3 2 3 2 2 2 2 8 4 3 4 4 4 7 4 8 7 7 4 7 4 4 7 8 4 7 4 3 7 4 9 4 9 5 7 9 9 6 7 5 6 9 6 7 9 8 6 6 7 5 6 9 6 6 7 8 9 6 6

Employee

T
im

e

0

1

2

3

4

5

6

7

8

D
ep

ar
tm

en
t

Ts Te Dpt

www.manaraa.com

107

Figure 3.11. Salary relation chart, sorted by Ts, Te & S

0

25

50

75

100

125

150

175

200

1 1 1 1 2 1 2 1 2 1 2 1 3 2 2 3 2 3 2 3 3 3 8 3 4 4 3 4 8 3 4 3 4 8 7 4 8 3 4 7 4 8 4 7 8 4 7 4 7 8 4 9 9 5 7 8 9 5 6 9 7 8 8 5 6 9 8 8 7 8 5 6 9 8 8 7 8 8 5 6 9 8 8 7 8

Employee

T
im

e

0

25

50

75

100

125

150

175

200

S
al

ar
y

Ts Te Sal

www.manaraa.com

108

Algorithm 3.5. TE-join for relations that are sorted by Ts, Te, and S.

Where the link is based on time intersection plus surrogate attribute.

 Step 1 : Select next r1 from R1 until eof.

 Step 2 : Seek r1 in R2, if not found step 4

 Step 3 : Add tuple to output go to step 1

 Step 4 : Find equivalent Ts and S in R2, if not found step 7

 Step 5 : Produce output, if not Te1 > Te2 then step 1

 Step 6 : Assign uncovered portions in step 5 as r1, go step 2

 Step 7 : Find r2 in which Ts2 <Ts1 <= Te2 go to step 5

This algorithm is good for event dependent tuples between different

relation because they always match in Ts, Te, and S.

Since both relations are indexed on Ts, Te, and S then single loop join

would be the most suitable method to implement the join. Either relation

can be used as outer loop and the result of the output would be the same

in both cases.

Cost:

In this algorithm, for each record in R1 we seek for the corresponding

records in R2. Hence, R1 is scanned only once. In the other side we may

find the exact corresponding record in R2 directly, or it might be

necessary to go back for a tuple in R2 were Ts2<Ts1<=Te2. This tuple

always exist in the last occurrence of corresponding “S” value from which

www.manaraa.com

109

seek pointer start searching using the available index. When the searching

pointer stops due to unsuccessful hit.

Cost of this algorithm as follows for each step: In step 1 we start taking

tuples from r1 in order. In step 2 we seek for matching tuples in R2 with

regard to primary key which is a multi-value keys consist of Ts, Te, and

S. If the matching record is found the cost would be only one block access

to produce an output tuple. And next we seek for next record in R1.

Otherwise, (if not found) we seek for a record that have the same Ts and S

using the same index. Again if this tuple were found then most probably

the cost would be only one block access to produce a single output tuple

(assuming normal distribution).

In step 5 and step 6 if Te1 is longer than Te2 then the uncovered portion

of r1 is calculated. And will be searched for again. In step 7, if no such

record can be found where Ts1=Ts2 and S1=S2 then we search for a tuple

in which Ts2<Ts1<=Te2 as depicted in Figures 3.12 (a) and (b) in order

to guarantee intersection

www.manaraa.com

110

(a)

(b)

Figure 3.12. Tuples r1 and r2 time intersection

In case of step 7, since exact matching Ts and S can not be found, the

pointer will stop at r2 tuple where Ts2 > Ts1. If we search backward from

that point to a tuple where we have matching S tuple, the first occurrence

of this matching tuple would be our target tuple where Ts2<Ts1<=Te2.

The cost to find this tuple would be either in the same block or nearby

r1

Ts1

r2

Te1

Ts2 Te2

r1

Ts1 Te1

Te2 Ts2

r2

www.manaraa.com

111

block since records are ordered according to Ts time stamp. In step 7 we

assume that the pointer stops at r21 and our desired tuple is r22. We

denote D to be the distance between of r21 and r22 tuples. Dr represent

the number of records occupy this distance. The cost of this algorithm

would be:

 C
5.3

= br1 + (| r1 | * (Dr2 / bfr))

If this algorithm were used for relations that have dependent events tuples

the cost would drop to be

 C
5.3

= br1 + br2

The cost would be as in merge-scan join.

For a better performance of this algorithm, outer relation should be the

relation with less number of records in order to increase the number of

successful seek (hits) and at the same time reduce the number of

unsuccessful seek (hits).

This algorithm has been implemented. The implementation can be found

in Annex 1. The output of this implementation is illustrated in Table 3.22.

The source code was written in Microsoft Access.

www.manaraa.com

112

Table 3.22. Output of algorithm 3.5.

Ts Te Emp_ID Dept Salary

1 10 01 1 50

11 15 01 1 55

16 20 01 3 60

21 30 01 3 70

21 30 02 2 60

31 40 01 1 75

31 40 02 2 65

41 45 01 1 80

41 50 02 2 70

46 50 01 3 85

51 55 02 2 75

51 60 01 3 100

51 60 03 5 45

56 60 02 2 85

61 65 02 3 90

61 65 03 4 49

66 69 02 1 100

66 70 03 4 53

70 70 02 2 100

71 74 02 2 110

71 80 03 4 58

75 78 02 5 110

79 80 02 2 110

81 85 03 4 62

86 90 03 4 65

90 100 08 2 40

91 95 03 1 68

91 95 04 1 50

96 100 04 2 55

96 105 03 1 70

101 104 04 5 60

101 110 08 2 45

105 105 04 3 60

106 110 03 1 75

106 110 04 3 65

111 115 03 1 80

111 115 04 1 70

111 115 07 2 50

111 115 08 1 50

116 120 04 1 75

116 120 07 1 50

116 125 08 1 56

116 140 03 1 85

121 125 04 2 80

121 125 07 5 55

126 126 04 2 85

126 130 07 1 55

126 130 08 1 70

127 130 04 4 85

131 134 04 1 90

131 135 07 5 60

131 140 08 3 73

135 135 04 4 90

136 138 04 4 100

136 140 04 5 100

136 140 07 3 65

141 142 04 5 110

141 150 03 5 85

141 150 07 4 70

141 150 08 3 75

143 145 04 3 110

146 147 04 3 120

146 150 09 5 70

148 150 04 1 120

151 154 09 1 85

151 160 05 4 60

151 160 07 1 75

151 165 08 3 78

155 155 09 1 100

156 159 09 4 100

160 160 09 5 100

161 163 06 1 60

161 168 09 5 110

161 170 05 5 70

161 170 07 4 80

164 169 06 2 60

166 170 08 3 80

169 170 09 3 110

170 170 06 4 60

171 173 08 1 85

171 174 06 4 70

171 175 07 2 80

171 180 05 5 80

171 180 09 1 125

174 175 08 1 88

175 179 06 3 70

176 177 08 1 90

176 180 07 2 85

178 181 08 1 93

180 180 06 1 70

181 181 06 1 75

181 181 09 1 130

181 185 07 4 85

181 190 05 3 90

182 184 06 5 75

182 184 08 1 95

182 190 09 2 130

185 186 08 1 97

185 189 06 3 75

186 190 07 4 95

187 189 08 1 99

190 190 06 1 75

190 190 08 1 100

191 192 08 2 100

191 193 09 2 135

191 194 06 1 80

191 195 07 2 95

191 200 05 3 95

193 193 08 2 110

194 196 08 2 115

194 200 09 3 135

195 197 06 2 80

196 200 07 2 100

197 200 08 2 120

198 200 06 5 80

www.manaraa.com

113

3.3.5 Join Using Ts in a Relation with Itself

For the department relation. Suppose that we need to know employees

that have been working together in the same department at the same time.

In order to answer this query we have to join “Department” relation with

itself. Before we talk about the design of the algorithm to implement this

query, let us sort department relation only by “Ts” key. The sorted

relation is illustrated in Table 3.23.

Table 3.23. Department relation sorted by Ts

Ts Emp_ID Te Dept

1 01 15 1

16 01 30 3

21 02 60 2

31 01 45 1

46 01 60 3

51 03 60 5

61 02 65 3

61 03 90 4

66 02 69 1

70 02 74 2

75 02 78 5

79 02 80 2

90 08 110 2

91 03 140 1

91 04 95 1

96 04 100 2

101 04 104 5

105 04 110 3

111 04 120 1

111 07 115 2

111 08 130 1

116 07 120 1

121 04 126 2

121 07 125 5

126 07 130 1

127 04 130 4

131 04 134 1

131 07 135 5

131 08 170 3

135 04 138 4

136 07 140 3

139 04 142 5

141 03 150 5

141 07 150 4

143 04 147 3

146 09 150 5

148 04 150 1

151 05 160 4

151 07 160 1

151 09 155 1

156 09 159 4

160 09 168 5

161 05 180 5

161 06 163 1

161 07 170 4

164 06 169 2

169 09 170 3

170 06 174 4

171 07 180 2

171 08 190 1

171 09 181 1

175 06 179 3

180 06 181 1

181 05 200 3

181 07 190 4

182 06 184 5

182 09 193 2

185 06 189 3

190 06 194 1

191 07 200 2

191 08 200 2

194 09 200 3

195 06 197 2

198 06 200 5

The chart of the above relation is illustrated in Figure 3.13. Note from the

chart that sorting in “Ts” attribute alone is good enough. Clearly, if there

is no second key in the sort, or if there is a second sort key for “Te” or

“Dept” attribute, the algorithm cost would still be the same

www.manaraa.com

114

Figur 3.13 Department relation chart, sorted by Ts

0

25

50

75

100

125

150

175

200

1 1 2 1 1 3 2 3 2 2 2 2 8 3 4 4 4 4 4 7 8 7 4 7 7 4 4 7 8 4 7 4 3 7 4 9 4 5 7 9 9 9 5 6 7 6 9 6 7 8 9 6 6 5 7 6 9 6 6 7 8 9 6 6

Employee

T
im

e

0

1

2

3

4

5

6

7

8

D
ep

ar
tm

en
t

Ts Te Dpt

www.manaraa.com

115

Figure 3.13. Department relation chart, sorted by Ts

Algorithm 3.6 below has been written to find the intersection in time and

time attribute inside the same relation. Note that intersection in time and

surrogate attribute in the same relation leads to duplicate in temporal

tuples, which contradict with temporal normal form.

Algorithm 3.6. TE-join for Same relation that are sorted by Ts.

Where the link is based on time intersection plus time attribute.

 Step 1 : If eof then end

 Step 2 : Read r1 from R and mark it BOF

 Step 3 : Read next record as r2

 Step 4 : If not Ts2 > Te1 then step 6

 Step 5 : - Move pointer to BOF,

 - Move to next record,

 - Go to step 1.

 Step 6 : If not A1 = A2 then step 3

 Step 7 : - Produce output tuple,

 - Go to step 3.

Single loop join topology is implemented in this algorithm.

Cost:
Note from the chart in Figure 3.13 that each record is probed only once

against the n subsequent tuples in the relation. And never probed against

any previous tuples, because tuples are sorted in “Ts” attribute in

ascending order. in the best case n = 1. In the worst case n could be all the

subsequent tuples to the end of the relation. Therefore total n in this case

would be:

 n-1

C = ∑ I

 i=1

www.manaraa.com

116

= n(n+1)/2
- n

= N2
/2

 - n/2

So the cost will be: C5.4 = br + (br) 2

This algorithm has been implemented. The implementation is attached in

Annex 1. Microsoft Access was used to write the source code. Table ٣�٢٤

illustrates the result of this implementation.

Table 3.24. Output of algorithm 3.6.

Ts Te Dept Emp_ID1 Emp_ID2

96 100 2 08 04

91 95 1 04 03

111 120 1 03 04

111 130 1 03 08

116 120 1 03 07

126 130 1 03 07

131 134 1 03 04

111 120 1 04 08

116 120 1 04 07

116 120 1 08 07

126 130 1 08 07

136 140 3 08 07

143 147 3 08 04

169 170 3 08 09

141 142 5 04 03

146 150 5 03 09

151 155 1 09 07

156 159 4 05 09

161 168 5 09 05

170 170 4 07 06

171 181 1 09 08

180 181 1 09 06

180 181 1 08 06

190 190 1 08 06

185 189 3 05 06

194 200 3 05 09

191 193 2 09 07

191 193 2 09 08

191 200 2 07 08

195 197 2 07 06

195 197 2 08 06

3.3.6 Other Cost Factors

In all the preceding algorithms there are other factors in calculating the

cost such like the cost of writing the output (joined tuples). But since the

www.manaraa.com

117

cost of writing the output tuples to the disk is the same regardless of the

chosen algorithm or plan [Silberschatz, 1997]. Then this cost was

excluded from our cost analysis for the previous algorithms. For

algorithms 3.3, 3.4, and 3.5 above, this cost is estimate to be:

 C
write-to-disk

 = (Js * | R1 | * | R2 |) / bfr

For algorithms 3.6 above, This cost is estimate to be:

 C
write-to-disk

 = (Js * | R1 | * | R1 |) / bfr

Where Js is the join selectivity.

The other type of cost that might be associated with the above algorithms

is sorting cost, in case the joined relation is not sorted. As the disk access

is the major factor in calculating the cost, then external sorting cost have

to be calculated. The most famous external sorting techniques is external

sort-merge algorithm. The cost of using this algorithm is :

C
external sort-merge

 = br (2
┌

log
M-1

 (br/M)
┐

+ 1)

Where M is the number of buffer pages.

The sorting cost can be calculated separately and added to the total cost of

the algorithm if necessary.

www.manaraa.com

118

4. CONCLUSION

4.1 Summary

In this dissertation, three main areas have been discussed. These areas are

involved in query optimization in relational databases in general and in

temporal relational databases in particular. These areas are relational

database schemes, relational database indexes, and temporal relations

joining in temporal relational databases.

We have suggested in section 3.1 a schema for temporal relational

databases. Tests have shown that tuple time stamping that involves

multiple relations for every time related attribute has a better overall

performance and efficiency, in both, processing time and used space.

Time representations in temporal database have a great effect in query

optimization. Time stamps should not occupy more memory space if they

can be managed to occupy less memory space, not only to save memory,

but also to improve the processing time.

Some researchers have concentrated on extending regular relational

concepts to adapt temporal aspects. Others have came up with totally new

ideas that even violate basic rules of relational databases. A reasonable

www.manaraa.com

119

combination of both should be taken in consideration when we want to

create a reliable and efficient temporal database. Integrating the time

dimension with relational model efficiently have to be accompanied with

a remedies to the complexities that arises from such a process. These

obstacles are listed in section one.

Abstract interfacing modules that regulate working with temporal

information have to be used in temporal databases. Also, the database

catalogues (dictionary) have to accommodate the temporal aspect with

regard to temporal relation.

Time behavior is predictable. It can be anticipated accurately. These

characteristics have been explored in creating a new approach that uses

hash function in indexing temporal relational databases. The cost of this

index is always one disk access.

There are applications were accurate timing for valid time-stamps are not

so crucial. As an example, application where data is updated upon

investigation. At the time of investigation, the status of the time attribute

might be found to be altered. But the exact alteration time is unknown. In

these kind of application transaction time can represent valid time too.

Continuity or discontinuities in temporal events in relational database

have to be taken into account when designing algorithms to join temporal

relation together. In section 3.3 we have explored four different types of

www.manaraa.com

120

algorithms. Each one of these algorithms is dedicated to deal most

efficiently with a temporal relation in a specific sorting order. The disk

access cost for these algorithms was discussed too. In order to ensure the

correctness of these four algorithms, these algorithms have been

implemented.

4.2 Future Work

In section 3.1, user-defined time-stamps have been suggested. Less time-

stamps size will lead to less numbers of disk access. But investigation

needs to be made with regards to the overhead in processing time caused

by processing varies sizes of time-stamps. Does the saved time in disk

access overweight the overhead caused by processing various sizes of

time-stamps?

Investigate the possibility and the implications of using a sequential real

number instead of the suggested used time granularity in the hash

clustered index structure approach.

Testing of the suggested schema can be implemented in real life

application with build-in constructs using universal time time-stamping.

Implementation of testing will investigate the feasibility and efficiency of

the suggested schema. Comparison of the suggested hashed cluster index

with other available schemes can be made to evaluate its performance.

www.manaraa.com

121

Although we have explored only four algorithms in joining temporal

relations of continuous type time event nature, but certainly there are

more algorithms to be explored for temporal relations of discrete type

time event nature. Also joins that involves time attribute in one relation

with surrogate attribute in the other relation with different sorting order

have not been investigated yet.

A complete algorithm to optimize a query in regular relation databases

have been explored as reviewed in section 2. In temporal relational

database, it is still early to develop such complete optimization

algorithms. But we can at least study the space search algorithms to

evaluate the cost in temporal relational databases for queries where

temporal attribute and none-temporal attributes are involved together in

the same query. Semijoins have been disscussed by Chen [1990]. We may

explore the possibilities to utilize semijoins with joining non-temporal

relations with temporal relations.

It has been expected that the next twenty years will be as active as the

previous twenty and will bring many advances to query optimization

technology. To describe the continuous importance of query optimization

in databases, we close the thesis by a quotation from Ioannidis [1995]

describing the research in this area, he wrote, “Despite its age, query

optimization remains an exciting field of researches”.

www.manaraa.com

122

 References:

Ahn, I., and Snodgrass, R.. 1986. Performance Evaluation of a Temporal

Database Management System. ACM Publication 0-89791-191-

1/86/0500/0096, pp 96-107.

Aho, V., Sagiv, Y., and Ullman, J.. 1986. Compilers: Principles,

Techniques, and Tools. Addison Wesley.

Bair, J., Bohlen, M., Jensen, C., and Snodgrass, R.. 1997. Notions of

Upward Compatibility of Temporal Query Languages. Prepared for

CHOROCHRONOS Project Funded by European commission. pp 589-

613.

Bozkaya, T.. 1998. Index Structures for Temporal and Multimedia

Databases. For the Degree of Doctor of Philosophy. Case Western

Reserve University.

Chen, M., and Yu, P.. 1990. Interleaving A Join Sequence With Semijoins

in Distributed Query Processing. IBM Thomas J. Watson Research

Center, Yorktown Heights, New York.

Chomicki, J.. 1995. Temporal Query Languages: a Survey. ACM

Symposium on Principles of Database systems

Christodoulakis, S.. 1984. Implications of certain assumptions in database

performance evaluation. ACM TODS, 9(2) pp 163-186.

Delaney, C., Rama, D., and Srinivasan, P.. 1992. Design of a Temporal

Database for Phlebitis. ACM 0-89791-502-X/92/0002/0204, pp 204-209.

Dyreson, C., and Snodgrass, R.. 1994. Temporal Granularity in TSQL2.

University of Arizona Technical Report 94-06. Arizona, United States of

America.

Elmasri, R., Kouramajian, V., and Fernando, S.. 1993. Temporal

Database Modeling: An Object-Oriented Approach. ACM 0-89791-626-

3/93/0011, pp 574-585.

www.manaraa.com

123

Elmasri, R., Navathe, S.. 2000. Fundamentals of Database Systems. 3
rd

edition. Addison Wesley. Canada.

Gadia, S., and Yeung, C.. 1988. A Generalized Model for a Relational

Temporal Database. ACM Publication 0-89791-3/88/0006, pp 251-259.

Gadia, S.. 1988. A Homogeneous Relational Model and Query Languages

for Temporal Databases. ACM Trans on Databases Systems, Vol. 3, No. 4,

pp 418-448.

Goralwalla, I., Tansel, A., and Ozsu, M.. 1995. Experimenting with

Temporal Relational databases. ACM Publication 0-89791-812-6/95/11,

pp 596-303.

Gunadhi, H., and Seqev, A.. 1990. A Framework in Temporal Databases.

Springer Verlag, Volume 420, p 131-147.

Ibaraki, T., and Kameda, T.. 1984. On the Optimal Nesting Order for

Computing N-Relation Joins. ACM Trans. Database Syst. 9(3), pp 482-

502

Ioannidis, Y., and Wong, E.. 1987. Query Optimization by Simulated

Annealing. Proc. ACM SIGMOD Int. Connf. On Management of Data,

pp 9-22

Ioannidis, Y., and Kang, Y.. 1990. Randomized Algorithms for

Optimizing Large Join Queries. Proc. ACM-SIGMOD Conference of the

Management of Data, pp 312- 321.

Ioannidis, Y., and Kang, Y.. 1991. Left-Deep vs. Bushy Trees: An

Analysis of Strategy Spaces and Its Implications for Query Optimization.

SIGMOD.

Ioannidis, Y. and Christodoulakis, S.. 1993. Optimal Histograms for

Limiting Worst-case Error Propagation in the Size of Join Results. ACM

TODS, 18(4), pp 709-748.

Ioannidis, Y.. 1995. Query Optimization. University of Wisconsin,

www.manaraa.com

124

Wisconsin, United States of America.

Kim, W.. 1982. On Optimizing an SQL-like Nested Query. TODS, 3:3.

King, J.. 1981. QUIST: A System for Semantic Query Optimization in

Relational Databases. VLDB Conference.

Knuth, D.. 1973. The Art of Computer Programming. Vol 3, Addison

Wesley, Sorting and Searching.

Kooi, R.. 1980. The optimization of Queries in Relational Databases. PhD

thesis, Case Western Reserve University.

Kouramajian, V., Kamal, I., Elmasri, R., and Waheed, S.. 1994. The

Time Index+: An Incremental Access Structure for Temporal Databases.

ACM Publication 0-89791-654-3/94/0011, pp 296-303.

Lipton, R., Naughton, J., and Schneider, D.. 1990. Practical Selectivity

Estimation through Adaptive Sampling. SIGMOD.

Nascimento, M., and Eich, M.. 1995. Indexing Bitemporal Databases Via

Trees with Shared Leaves – The SLT Approach. Technical Report 95-

CSE-06, Southern Methodist University. Texas, United States of America

Ozkaraham, E.. 1990. Database Management Concepts, Design, and

Practice. Prentice Hall International, Inc. New Jersey. United States of

America.

Ozsu, M., and Valduriez, P.. 1999. Principles of Distributed Database

Systems. 2
nd

 edition. Prentice-Hall, Inc. New Jersey, United States of

America.

Piatetsky-Shapiro, G., and Connell, C.. 1984. Accurate Estimation of the

Number of Tuples Satisfying a Condition. Proc ACM-SIGMOD

Conference of the Management of Data, PP 256-276.

Popescul, A., Gary F., Steve L., Lyle U., and Giles, C.. 2000. Clustering

and Identifying Temporal Trends in Document Database. IEEE Advances

in Digital Libraries, pp 173-182.

www.manaraa.com

125

Qutaishat, M.. 1999. Databases. The Arab Academy for Banking and

Financial Sciences. Jordan.

Segev, A. and Shoshani, A.. 1998. Functionality of Temporal Data Models

and Physical Design Implementations. IEEE Database Engineering,

11(4):38-45.

Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., and Price, T.. 1979.

Access Path Selection in a Relational Database Management System.

Proc. ACM-SIGMOD Conf. On the Management of Data, PP 23-34.

Siegel, M., Sciore, E., and Salveter, S.. 1992. A Method for Automatic

Rule Derivation to Support Semantic Query Optimization. TODS, 17:4.

Silberschatz, A., Korth, H., and Sudarshan, S.. 1997. Database Systems

Concepts. 3
rd

 edition. The McGraw Hill Companies, Inc. Singapore.

Skjellaug, B.. 1997. Temporal Data: Time and Object databases.

Universitetet i Oslo, Norway

Slivinskas, G., Jensen, C., and Snodgrass, R.. 2001. Adaptable Query

Optimization and Evaluation in Temporal Middleware. A TimeCenter

Technical Report.

Smith, J., and Chang, P.. 1975. Optimizing the Performance of a

Relational Algebra Database Interface. Commun. ACM, 18(10): pp 568-

579

Snodgrass, R.. 1987. The Temporal Query Language TQuel. ACM Trans

on Database Systems, Vol. 12, No. 2, pp 247-298.

Snodgrass, R., Bohen, M., Jensen, C., and Steiner, A.. 1996. Adding

Transaction Time to SQL / Temporal. International Organization for

Standardization. ANSI X3H2-96-502r2.

Snodgrass, R., Bohen, M., Jensen, C., and Steiner, A.. 1996. Adding Valid

www.manaraa.com

126

Time to SQL / Temporal. International Organization for Standardization.

ANSI X3H2-96-501r2.

Spiteri, M., and Bates, J.. 1998. An Architecture to Support Storage and

Retrieval of Events. Proceeding of MIDDLEWARE, IFIP International

Conference on Distributed Systems Platforms and Open Distributed

Processing

Steiner, A.. 1998. A Generalization Approach to Temporal Data Models

and their Implementations. A dissertation submitted for the degree of

Doctor of Technical sciences. Swiss Federal Institute of Technology.

Zurich, Switzerland.

 Swami, A.. 1989. Optimization of Large Join Queries: Combining

Heuristics and Combinatorial Techniques. Proc ACM SIGMOD Int.

Conf. On Management of Data,, pp 367-376

Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass,

R.. 1993. Temporal Databases Theory, Design, and Implementation. The

Benjamin / Cummings Publishing Company, Inc. California. United

States of America.

Toman, D.. 1995. Foundations of Temporal Query Languages. A

Dissertation for Doctor of Philosophy. Kansas State University. Kansas,

United States of America.

Toman, D.. 1996. Point vs. Interval-based Query Languages for

Temporal Databases. ACM 0-89791-791- 2/96/06. pp 58-67

Toshiyuki A., Masayoshi A., and Yoshinari K. 1999. An Implementation

of Interval Based Conceptual Model for Temporal Data. IEICE Trans.

Inf. & Syst., Vol. E82-D, No. 1, pp 136-146.

Tsotras, V., and Kumar, A.. 1996. Temporal Database Bibliography

Update. SIGMOD Record, 25(1): pp 41-51.

Ullman, J.. 1982. Principles of Database Systems (2
nd

 edition), Md.:

Computer Science Press.

www.manaraa.com

127

Valduriez, P., and Gardarin, G.. 1984. Join and Semi-join Algorithms for

a Multi Processor Database Machine. ACM Trans. Database Syst. 9(1),

pp 133-161.

Yoo, H. and Lafortune, S.. 1989. An Intelligent Search Method for Query

Optimization by Semijoins. IEEE Trans. On Knowledge and Data

Engineering 1(2): pp 226-237.

Yu, X., and Fu, A.. 1984. Piecewise Linear Histograms for Selectivity

Estimation. SIGMOD, ACM Press, pp 256-276.

www.manaraa.com

128

Appendix 1 : Join implementations source code

Module: Join_Dpt&Dpt_Ts&A Page: 1

 Properties
 Date Created: 09/03/2002 2:16:29 PM Last Updated: 10/03/2002 8:28:46 AM
 Owner: admin

 Code
 1 Attribute VB_Name = "Join_Dpt&Dpt_Ts&A"
 2 Option Compare Binary
 3 Option Explicit
 4
 5
 6
 7 Public Function Join4()
 8
 9 Dim MyDb As Database
 10 Dim Dpt, Join As Recordset
 11 Dim DTs1, DTe1, DTs2, DTe2 As Byte
 12 Dim Dpt1, Dpt2 As String
 13 Dim Emp1, Emp2 As String
 14 Dim VarBook1 As Variant
 15 Dim RecNo As Double
 16
 17 Set MyDb = CurrentDb()
 18 Set Dpt = MyDb.OpenRecordset("Emp_Temp_Dept", DB_OPEN_TABLE)
 19 Set Join = MyDb.OpenRecordset("Emp_Dpt&Dpt_Ts+A", DB_OPEN_TABLE)
 20
 21 Dpt.Index = "TSATE"
 22 Dpt.MoveLast
 23 Dpt.MoveFirst
 24
 25 DTs1 = Dpt![TS]
 26 DTe1 = Dpt![TE]
 27 Dpt1 = Dpt![Dept]
 28 Emp1 = Dpt![Emp_ID]
 29 VarBook1 = Dpt.Bookmark
 30 RecNo = 0
 31
 32 Start:
 33 '==
 34 Dpt.MoveNext
 35 If Not Dpt.EOF Then
 36 DTs2 = Dpt![TS]
 37 DTe2 = Dpt![TE]
 38 Dpt2 = Dpt![Dept]
 39 Emp2 = Dpt![Emp_ID]
 40 End If
 41

www.manaraa.com

129

Module: Join_Dpt&Dpt_Ts&A Page: 2

 42 If (DTs2 > DTe1 Or Dpt.EOF) Then
 43 Dpt.Bookmark = VarBook1
 44 Dpt.MoveNext
 45 If Dpt.EOF Then
 46 MsgBox "Joint process is completed"
 47 Exit Function
 48 End If
 49 VarBook1 = Dpt.Bookmark
 50 DTs1 = Dpt![TS]
 51 DTe1 = Dpt![TE]
 52 Dpt1 = Dpt![Dept]
 53 Emp1 = Dpt![Emp_ID]
 54 GoTo Start
 55 Else
 56 If Dpt1 <> Dpt2 Then
 57 GoTo Start
 58 Else
 59 Select Case DTe1
 60 Case Is > DTe2 ''' DTe1 > DTe2
 61 RecNo = RecNo + 1
 62 Join.AddNew
 63 Join![Emp_ID1] = Emp1
 64 Join![Emp_ID2] = Emp2
 65 Join![Dept] = Dpt1
 66 Join![TS] = DTs2
 67 Join![TE] = DTe2
 68 Join![No] = RecNo
 69 Join.Update
 70 GoTo Start
 71 Case Is = DTe2 ''' DTe1 = DTe2
 72 RecNo = RecNo + 1
 73 Join.AddNew
 74 Join![Emp_ID1] = Emp1
 75 Join![Emp_ID2] = Emp2
 76 Join![Dept] = Dpt1
 77 Join![TS] = DTs2
 78 Join![TE] = DTe2
 79 Join![No] = RecNo
 80 Join.Update
 81 GoTo Start
 82 Case Else ''' DTe1 < DTe2
 83 RecNo = RecNo + 1
 84 Join.AddNew
 85 Join![Emp_ID1] = Emp1
 86 Join![Emp_ID2] = Emp2
 87 Join![Dept] = Dpt1
 88 Join![TS] = DTs2
 89 Join![TE] = DTe1
 90 Join![No] = RecNo
 91 Join.Update
 92 GoTo Start

www.manaraa.com

130

Module: Join_Dpt&Dpt_Ts&A Page: 3

 93 End Select
 94
 95 End If
 96
 97 End If
 98
 99 End Function

 User Permissions

 admin

 Group Permissions

 Admins
 Users

www.manaraa.com

131

Module: Join_Sal&Dept_S&Ts Page: 4

 Properties
 Date Created: 05/03/2002 11:33:49 AM Last Updated: 06/03/2002 2:07:42 PM
 Owner: admin

 Code
 1 Attribute VB_Name = "Join_Sal&Dept_S&Ts"
 2 Option Compare Database
 3 Option Explicit
 4
 5
 6 Public Sub Join1()
 7 Dim MyDb As Database
 8 Dim MySetDept, MySetSal, MySetJoin As Recordset
 9 Dim Dpt, Sal, Join As Recordset
 10 Dim i, j As Double
 11 Dim DTs, DTe, STs, STe As Byte
 12
 13 Set MyDb = CurrentDb()
 14 Set Sal = MyDb.OpenRecordset("Emp_Temp_Sal", DB_OPEN_TABLE)
 15 Set Dpt = MyDb.OpenRecordset("Emp_Temp_Dept", DB_OPEN_TABLE)
 16 Set Join = MyDb.OpenRecordset("Emp_Sal&Dept_S&Ts", DB_OPEN_TABLE)
 17
 18 Dpt.Index = "primarykey"
 19 Sal.Index = "primarykey"
 20 Dpt.MoveFirst
 21 Sal.MoveFirst
 22
 23 DTs = Dpt![TS]
 24 DTe = Dpt![TE]
 25 STs = Sal![TS]
 26 STe = Sal![TE]
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41

www.manaraa.com

132

Module: Join_Sal&Dept_S&Ts Page: 5

 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57 Start:
 58 '==
 59 If Dpt![Emp_ID] = Sal![Emp_ID] Then
 60
 61 If DTs = STs Then
 62
 63 Select Case DTe
 64 Case Is > STe ' DTe > STe
 65 Join.AddNew
 66 Join![Emp_ID] = Dpt![Emp_ID]
 67 Join![Dept] = Dpt![Dept]
 68 Join![Salary] = Sal![Salary]
 69 Join![TS] = DTs
 70 Join![TE] = STe
 71 Join.Update
 72 DTs = STe + 1
 73 DTe = DTe
 74 Sal.MoveNext
 75 STs = Sal![TS]
 76 STe = Sal![TE]
 77 GoTo Start
 78 Case Is = STe ' DTe = STe
 79 Join.AddNew
 80 Join![Emp_ID] = Dpt![Emp_ID]
 81 Join![Dept] = Dpt![Dept]
 82 Join![Salary] = Sal![Salary]
 83 Join![TS] = DTs
 84 Join![TE] = DTe
 85 Join.Update
 86 Dpt.MoveNext
 87 Sal.MoveNext
 88 DTs = Dpt![TS]
 89 DTe = Dpt![TE]
 90 STs = Sal![TS]
 91 STe = Sal![TE]
 92 GoTo Start

www.manaraa.com

133

Module: Join_Sal&Dept_S&Ts Page: 6

 93 Case Else ' DTe < STe
 94 Join.AddNew
 95 Join![Emp_ID] = Dpt![Emp_ID]
 96 Join![Dept] = Dpt![Dept]
 97 Join![Salary] = Sal![Salary]
 98 Join![TS] = DTs
 99 Join![TE] = DTe
 100 Join.Update
 101 STs = DTe + 1
 102 STe = STe
 103 Dpt.MoveNext
 104 DTs = Dpt![TS]
 105 DTe = Dpt![TE]
 106 GoTo Start
 107 End Select
 108
 109 End If
 110 else
 111 Msgbox “Alert..Invistigate”
 112 End If
 113
 114 End Sub

 User Permissions

 admin

 Group Permissions

 Admins
 Users

www.manaraa.com

134

Module: Join_Sal&Dept_Ts&S Page: 7

 Properties
 Date Created: 09/03/2002 11:46:50 AM Last Updated: 19/03/2002 7:56:52 PM
 Owner: admin

 Code
 1 Attribute VB_Name = "Join_Sal&Dept_Ts&S"
 2 Option Compare Binary
 3 Option Explicit
 4
 5
 6
 7 Public Function Join2()
 8
 9 Dim MyDb As Database
 10 Dim Dpt, Sal, Join As Recordset
 11 Dim DTs, DTe, STs, STe As Byte
 12
 13 Set MyDb = CurrentDb()
 14 Set Sal = MyDb.OpenRecordset("Emp_Temp_Sal", DB_OPEN_TABLE)
 15 Set Dpt = MyDb.OpenRecordset("Emp_Temp_Dept", DB_OPEN_TABLE)
 16 Set Join = MyDb.OpenRecordset("Emp_Sal&Dept_Ts&S", DB_OPEN_TABLE)
 17
 18 Dpt.Index = "primarykey"
 19 Sal.Index = "primarykey"
 20 Dpt.MoveFirst
 21 Sal.MoveFirst
 22
 23 DTs = Dpt![TS]
 24 DTe = Dpt![TE]
 25
 26 Start1:
 27 '==
 28 If Dpt.EOF Then
 29 MsgBox "Joint process is completed"
 30 Exit Function
 31 End If
 32
 33 Sal.Seek "=", DTs, Dpt!Emp_ID
 34 If Sal.NoMatch Then
 35 Sal.Seek ">", Dpt!TS ''', Dpt!Emp_ID
 36 If Sal.NoMatch Then ''' to handle eof
 37 Sal.MoveLast
 38 Do While Dpt!Emp_ID <> Sal!Emp_ID
 39 Sal.MovePrevious
 40 Loop
 41 End If

www.manaraa.com

135

Module: Join_Sal&Dept_Ts&S Page: 8

 42
 43 STs = Sal![TS]
 44 Do While (Dpt!Emp_ID <> Sal!Emp_ID Or STs > DTs)
 45 Sal.MovePrevious
 46 STs = Sal![TS]
 47 Loop
 48 End If
 49 STs = Sal![TS]
 50 STe = Sal![TE]
 51
 52 '==
 53 Select Case DTe
 54 Case Is > STe ''' DTe > STe
 55 Join.AddNew
 56 Join![Emp_ID] = Dpt![Emp_ID]
 57 Join![Dept] = Dpt![Dept]
 58 Join![Salary] = Sal![Salary]
 59 Join![TS] = DTs
 60 Join![TE] = STe
 61 Join.Update
 62 DTs = STe + 1
 63 DTe = DTe
 64 GoTo Start1
 65 Case Is = STe ''' DTe = STe
 66 Join.AddNew
 67 Join![Emp_ID] = Dpt![Emp_ID]
 68 Join![Dept] = Dpt![Dept]
 69 Join![Salary] = Sal![Salary]
 70 Join![TS] = DTs
 71 Join![TE] = DTe
 72 Join.Update
 73 Dpt.MoveNext
 74 If Not Dpt.EOF Then
 75 DTs = Dpt!TS
 76 DTe = Dpt!TE
 77 End If
 78 GoTo Start1
 79 Case Else ''' DTe < STe
 80 Join.AddNew
 81 Join![Emp_ID] = Dpt![Emp_ID]
 82 Join![Dept] = Dpt![Dept]
 83 Join![Salary] = Sal![Salary]
 84 Join![TS] = DTs
 85 Join![TE] = DTe
 86 Join.Update
 87 Dpt.MoveNext
 88 If Not Dpt.EOF Then
 89 DTs = Dpt!TS
 90 DTe = Dpt!TE
 91 End If
 92 GoTo Start1

www.manaraa.com

136

Module: Join_Sal&Dept_Ts&S Page: 9

 93 End Select
 94
 95 End Function

 User Permissions

 admin

 Group Permissions

 Admins
 Users

www.manaraa.com

137

Module: Join_Sal&Dept_Ts&Te Page: 10

 Properties
 Date Created: 07/03/2002 5:09:49 PM Last Updated: 08/03/2002 6:51:29 PM
 Owner: admin

 Code
 1 Attribute VB_Name = "Join_Sal&Dept_Ts&Te"
 2 Option Compare Database
 3 Option Explicit
 4
 5
 6 Public Function Join3()
 7
 8 Dim MyDb As Database
 9 Dim Dpt, Sal, Join As Recordset
 10 Dim DTs, DTe, STs, STe, Tmp1, Tmp2 As Byte
 11
 12 Set MyDb = CurrentDb()
 13 Set Sal = MyDb.OpenRecordset("Emp_Temp_Sal", DB_OPEN_TABLE)
 14 Set Dpt = MyDb.OpenRecordset("Emp_Temp_Dept", DB_OPEN_TABLE)
 15 Set Join = MyDb.OpenRecordset("Emp_Sal&Dept_Ts&Te", DB_OPEN_TABLE)
 16
 17 Dpt.Index = "TSTE"
 18 Sal.Index = "TSTE2"
 19 Dpt.MoveLast
 20 Sal.MoveLast
 21 Dpt.MoveFirst
 22 Sal.MoveFirst
 23
 24 STs = Sal![TS]
 25 STe = Sal![TE]
 26 DTs = Dpt![TS]
 27 DTe = Dpt![TE]
 28
 29
 30
 31 Start1:
 32 '==
 33 If Dpt.EOF Then
 34 MsgBox "Joint process is completed"
 35 Exit Function
 36 End If
 37
 38 Sal.Seek "=", DTs, DTe, Dpt!Emp_ID
 39 If Sal.NoMatch Then
 40 Sal.Seek ">=", DTs ', We use >= to represent = here
 41 If Not Sal.NoMatch Then ' neither > nor =, to handle eof

www.manaraa.com

138

Module: Join_Sal&Dept_Ts&Te Page: 11

 42 If Sal![TS] <> DTs Then ' STs > DTs, we don't need more seeks
 43 Sal.MovePrevious
 44 Do While Dpt!Emp_ID <> Sal!Emp_ID
 45 Sal.MovePrevious
 46 Loop
 47 If Not (Dpt!TS > Sal!TS And Dpt!TS <= Sal!TE) Then
 48 MsgBox " Alert, Invistigate"
 49 End If
 50 Else ' STs = DTs
 51 Do While (Dpt!Emp_ID <> Sal!Emp_ID And DTs = Sal!TS)
 52 Sal.MoveNext
 53 If Sal.EOF Then
 54 Sal.MovePrevious
 55 Exit Do
 56 End If
 57 Loop
 58 If (DTs <> Sal!TS Or Dpt!Emp_ID <> Sal!Emp_ID) Then
 59 Sal.MovePrevious
 60 Do While Dpt!Emp_ID <> Sal!Emp_ID
 61 Sal.MovePrevious
 62 Loop
 63 If Not (Dpt!TS > Sal!TS And Dpt!TS <= Sal!TE) Then
 64 MsgBox " Alert, Invistigate"
 65 End If
 66 End If
 67 End If
 68 Else
 69 Sal.MoveLast
 70 Do While Dpt!Emp_ID <> Sal!Emp_ID
 71 Sal.MovePrevious
 72 Loop
 73 If Not (Dpt!TS > Sal!TS And Dpt!TS <= Sal!TE) Then
 74 MsgBox " Alert, Invistigate"
 75 End If
 76 End If
 77 End If
 78 STs = Sal![TS]
 79 STe = Sal![TE]
 80
 81 Start2:
 82 '==
 83 Select Case DTe
 84 Case Is > STe ' DTe > STe
 85 Join.AddNew
 86 Join![Emp_ID] = Dpt![Emp_ID]
 87 Join![Dept] = Dpt![Dept]
 88 Join![Salary] = Sal![Salary]
 89 Join![TS] = DTs
 90 Join![TE] = STe
 91 Join.Update
 92 DTs = STe + 1

www.manaraa.com

139

Module: Join_Sal&Dept_Ts&Te Page: 12

 93 DTe = DTe
 94 GoTo Start1
 95 Case Is = STe ' DTe = STe
 96 Join.AddNew
 97 Join![Emp_ID] = Dpt![Emp_ID]
 98 Join![Dept] = Dpt![Dept]
 99 Join![Salary] = Sal![Salary]
 100 Join![TS] = DTs
 101 Join![TE] = DTe
 102 Join.Update
 103 Dpt.MoveNext
 104 If Not Dpt.EOF Then
 105 DTs = Dpt![TS]
 106 DTe = Dpt![TE]
 107 End If
 108 GoTo Start1
 109 Case Else ' DTe < STe
 110 Join.AddNew
 111 Join![Emp_ID] = Dpt![Emp_ID]
 112 Join![Dept] = Dpt![Dept]
 113 Join![Salary] = Sal![Salary]
 114 Join![TS] = DTs
 115 Join![TE] = DTe
 116 Join.Update
 117 Dpt.MoveNext
 118 DTs = Dpt!TS
 119 DTe = Dpt!TE
 120 GoTo Start1
 121 End Select
 122
 123 End Function

 User Permissions

 admin

 Group Permissions

 Admins
 Users

www.manaraa.com

140

Appendix 2 : Abbreviations and description

DBMS Database Management System

CPU Central Processing Unit

WAN Wide Area Network

MAN Medium Area Network

1NF First Normal Form

N1NF Non-First Normal Form

TTSR Tuple Timestamp Single Relation

TTMR Tuple Timestamp Multiple Relations

K Key attributes

U Non-Temporal attributes (Unchangeable)

M Temporal attributes

L Timestamps, L=[l1,l2]

Si Size of fields in bytes

C(t) Cost of a tuple in total number of bytes.

P Probability for a temporal attribute to be updated

(changed)

Ts Timestamp (starting)

Te Timestamp (ending)

S Surrogate attribute (Key field in temporal relation)

A Temporal attribute

TBT Temporal Buffer Table

UC Until Changed

TIM Temporal Interfacing Model

D Address of most outer index level

N Number of levels

P Address pointer

UT Universal Timing

TNF Temporal Normal Form

BCNF Boyce-Codd Normal Form

R Relation

r Tuple within a relation

.eof End Of File

b Number of blocks

Dr Number of tuples within a distance between pointer

stops and the actual correct address

Seek Used to search the index

Find Used to search a sequential file

Bfr Buffer Factor

Js Join Selectivity

www.manaraa.com

141

������� ��	
����
������� ����� �
�� �� ����� ������ ����� ���� !"�

����#
��$� ���� ���!

%��&#

�&�'� (��� �� ����

)*+�

����� ��	
���� ����
�������� �
���� �������
�������
	��� ����� . ����� ������� �����

�� �� ���� ���
�������
	��� !"� ����
 #��� ��
�
$� ��%

	 ���&�� �#�$�� ����'

����� ���� (�
��� ����.

 ���� ���
�������
	��� !"�� ������)����� *�+� ,-��� .���� /
�
	
�$�����
�
�

��������� .)��$�� ����� (���0)������ 1���� ,-����� 2-� 3�� . ,-����� 1���� �����

��� (���0)������ 4�&5�)��
#�� /

��� ����� (���0 �6)�
#�� ��
�$6 ��.

 7- ������� ���� ���
�������
	��� ,-���� ������ ���+� /
	 1�0)��$� �$��05� 2-�

������� ���� ���
�������
	��� !"� ���0� �)��
#�� /

����� ������� (���0�� : �9���� !�

 ���� ���
�������
	��� !"� ,-���/

����� ������� . !"� ,-���� ���&���
���0��
�
$�

 ������� ���� ���
�������
	��� !"� �)��
#�� /

����� ������� ���� ���
�������
	���

)�
#�� ��
�$5� . /

����� ������� ���� ���
�������
	��� !"� ,-���� ���&��� ���'� �������

���
	��� !"� (�)��
#��)�
#�� ��
�$5� ������� ���� ���
���� .)'�� !��:� !� ;�-'�

������ (��0��� ��������
 #��� /.��'�)�:��� !� � 7
���	 <��� �� ����= . �=

������� �������� ������ ,-����� ��:= > ���� ?�$ ����	 �����$ �6 1�+�� ��+�����

)����� -������ !���� !��� .

�������&������'
�� ����� (0������ 7������� 0���� /
� .

�������)��
#�� �� @�& ��� (�)������
��:
�������&�� 2-� > �������)��
#��)A�

?
$�� ��	 /
������� ��:������.

	Complete_Thesis_Library_01.pdf

